SUPPLEMENT TO ”CONSISTENT MAXIMUM LIKELITHOOD
ESTIMATION USING SUBSETS WITH APPLICATIONS TO
MULTIVARIATE MIXED MODELS”

By KARL OSKAR EKVALL AND GALIN L. JONES
University of Minnesota

This note contains additional results and more detailed proofs of
some results in ”Consistent Maximum Likelihood Estimation Using
Subsets with Applications to Multivariate Mixed Models”. Through-
out, we refer to that article as Ekvall and Jones (2019).

1. Theory. Results in this section pertain primarily to Section 2 in Ekvall and
Jones (2019).

1.1. Preliminary results. We present some lemmas that are used when proving
the main results.

LEMMA 1. For any positive random variables X, Y, Z, defined on the same prob-
ability space, and ¢ >0, P(XY > Z) <P(X >¢)+P(Y > Z/c).

PRrOOF. If for positive constants x,y, z, ¢ it holds that xy > z, then either z > ¢
or y > z/e, since otherwise xy < ¢(z/c) = z. Thus, {w : X(w)Y(w) > Z(w)} C{w:

X(w) > cU{w : Y(w) > Z(w)/c}. By sub-additivity of measures, P(XY > Z) <
PUX >ctU{Y >Z/c}) <P(X >¢)+P(Y > Z/c). O
LEMMA 2. Suppose A;,;i = 1,....n are compact subsets of some metric space

(T,dr) such that NIy A; = 0, then the open covers C; = Uyea,Bs(x), i = 1,...,s,
also have an empty intersection for all small enough § > 0.

PrOOF. Consider the covers Ci; = Uzea, Bijp(x), bk = 1,2,..., 0 = 1,...,n. If
Cy = NiCy,; = 0 for some k < oo, then we are done. Suppose for contradiction Cj, is
non-empty for every k < oco. By construction, every point zj € Cf is within 1/k of at
least one point in every A;. That is, we can pick, for every kK > 1 andi=1,...,n, an
x € Cy and yi,; € A; such that d(zy,yr,;) < 1/k. Thus, by the triangle inequality,
for every k, d(yr,,yr,;) < 2/k. By compactness of Ay, say, yi1 has a convergent
subsequence yi,, 1 — Y1 as m — oo, for some y; € A; by the fact that A; is closed as
a compact subset of a metric space. But then, for every i, by the triangle inequality,
A Y is Y1) < AWk is Yhirn 1)+ AUk 1, Y1) < 2/ ki +d (Y, 1,91) — 0 as m — oo. Thus,
since every A; is closed, y1 € A; for every i, which is the desired contradiction. O

LEMMA 3. Suppose © is a compact subset of some metric space and, for every
0 € O, fy is a probability density against some dominating measure v which does not
1
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depend on 0. Suppose also that fo(x) is continuous in 0 for every x and define the
measures vy by vg(A) = [, fo(x)dv(z) for any v-measurable A. Then for any 9° c o,
the set ©0 = {0 € © : vy = vy} is compact.

PROOF. Because O is a compact subset of a metric space, it suffices to show that
OV is closed. Note that ©° always includes the point #° and is thus non-empty. Pick
an arbitrary converging sequence 6,, € O, call the limit point §*. By continuity of
0 — fo(z) for every x, fo, — fo= pointwise. Now for any v-measurable A, |vg«(A) —
vgo(A)] < |vg«(A) — vy, (A)| + [vgo(A) — vy, (A)| = |vg(A) — v, (A)|, which vanishes
as n — oo by a generalized dominated convergence theorem [6, Theorem 19] — the
dominating sequence of functions for which the integrals converge can be fy, (z) >
fo,,(x)I4(x) — so indeed 0* € Q°. O

1.2. Main results. For economical notation in the proofs we write fo(y) = f7'(v),

fo(yi) = fo.i(yi), fo(w) = go(w), fo(u) = ¢p(u), and so on. That is, the letter f is
overloaded and the argument indicates which density we are referring to.

PrROOF LEMMA 2.1 IN EKVALL AND JONES (2019). Let Y = (W, 2),
where Z consists of the components of Y that are not in the subcollection W. Then
fo(y) = fo(w, z) and by (conditional) Markov’s inequality, for any k& > 0,

P(L,(0;Y)>c|W)<cE(L,(0;Y)|W)=c'E (Jm | W) .

Now the following calculation shows the random variable
Lin(0; W) = fo(W)/ fo (W)
is a version of E (fo(W, Z)/ foo(W, Z) | W):
Jo(w, 2)

Z f@o(wv Z)

f@(wa Z) f90 (wa Z)
z Joo(w,2) foo(w)
f9 (w7 Z)
= Iz faolw) A
_ Jo(w)
foo(w)’
where vy is the measure against which the components in Z have joint density fy(z)

and Z is the range space of Z. Since the conditional expectation is unique up to P-null
sets, this finishes the proof. O

foo(z | w)vz(dz) = vz(dz)

PrROOF OF LEMMA 2.2 IN EKVALL AND JONES (2019). Fix some arbitrary ¢ >
0. If supgeq, Ln(0;Y) < 1 for i = 1,...,s, then, since L,(6";Y) = 1, there are no
global maximizers in Ui_; 4; O © N B:(6°)¢. Thus, it suffices to prove

P (U {Sup L,(0;Y)> 1}) < zs:P <sup Ln(0;Y) > 1) — 0.

= loea; = \vea
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Since s is fixed it is enough that P (suppe s, Ln(6;Y) > 1) — 0 for every i = 1,...,s.
Without loss of generality, consider ¢ = 1. Pick a cover of A; as given by Assumption
3 and, for every ball in the cover, pick a 67 in the intersection of that ball with A;. If
there are some balls that do not intersect A;, they may be discarded from the cover,
so we assume without loss of generality that all balls do intersect A;. We then get
M, 1 points such that every point in A; is within d,, 1 of at least one of them. For any
6 € Ay, let 67(0) denote the 67 closest to it (pick an arbitrary one if there are many).
Using the Lipschitz continuity given by Assumption 2 and that x +— e” is increasing
we have,

P (sup L,(0;Y) > 1> =P (Sup Ay (0;Y) > O)
0cAyq Ay

=P (sup 0,(0;Y) > ZH(GO;Y)> ,
oAy

which is upper bounded by

<P (sup [0 Y) + Knadr0.600)] 2 0,0%Y) )
fcAq

Because there are only M, 1 points 67, and dr(67(0),0) < §,.1 since 67(0) is the one
closest to 8, we get that the last line is upper bounded by

J. > 0.
P (Jinﬂ%r}f,l [gn(e 7Y) + Kn,lén,l] = en(a 7Y)>

=P <_max foi (Y)eBnaon1 > £ (Y)) .

]SMn,l

But by applying Lemma 1 with ¢ = 2,

p ( max fy (V)erons > foo(Y)>

jSMn,l

<P (2 max fej (Y) > f@U(Y>) +P (eKn,15n,1 > 2)

J<Mn 1

= (2,mx f (V)2 (1)) +ol)
J SMn,l

where the last line uses Assumption 3. The choice of the constant 2 in the application

of Lemma 1 is arbitrary — any number with positive logarithm works. The remaining

term,

P (2,mx f(1) > 1) =P (e L(@5v) 2 172),

]S n,l
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we will deal with using Lemma 2.1 and dominated convergence. After conditioning
on W) we have

Mn,l
P <max Lo(67;Y) > 1/2 | W“>> < 2L, (07, W)
=1

]SMn,l

S 2Mn,1 sup Lm1 (07 W(l))7
fcA;
P-almost surely, where the first inequality is by subadditivity and Lemma 2.1, and the
second uses that L,(67; W) < suppe 4, Lm, (0; W) by definition. The expression
in the last line vanishes as n — oo by Assumption 3. Thus,

P < max L, (67;Y) > 1/2> —0
jSMn,l

by dominated convergence. The dominating function can be the constant 1. This

finishes the proof. O

2. Applications. Results in this section pertain primarily to Section 3 in Ek-
vall and Jones (2019). Let Apax(-) and Apin(-) denote the maximum and minimum
eigenvalue of its matrix argument, respectively. For matrices, || - || denotes the spectral
norm and || - || the Frobenius norm. Differentiation with respect to 6; is denoted V.

We will use the following well known fact repeatedly. It is stated as a lemma for
easy reference.

LEMMA 4. If h is a continuous function from some metric space X to R and A
is a compact subset of X, then sup,c s h(z) = h(z*) for some x* € A. In particular,
if h(z) < ¢ for some constant ¢ and every x € A, then sup,c4 h(x) < c.

Of course, the same holds if the supremum is replaced by an infimum or if less than
is replaced by greater than.

LEMMA 5. Let X, 1,..., Xy, be a triangular array with rows of i.i.d. multivariate
normal q-vectors with mean E(X, ;) = p = () and covariance matriz cov(X,, ;) =
¥ =3%(0), 0 € O©. Suppose that

0<1/er < inf Apin(2(0)) < sup Apax(2(0)) < 1 < 00
0cO PcO

and supgeg ||1(0)|| < ¢ for some c1,ca € (0,00), then

sup [n ") {Ai(0; Xp i) — E[A1(0; Xp1)]}| — 0,
0€© i1

P-almost surely, where N;(0; Xy, ;) = log fo(Xni)/ foo(Xni), and fo(Xy:) means the
density for X, ; evaluated at X, ;.
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PROOF. Theorem 16 in Ferguson [2] applies almost verbatim to triangular arrays
in place of i.i.d. sequences. The only necessary modification to its proof is that the
pointwise strong law of large numbers needs to be motivated. Write

sup [A1(0; )| < sup |log fo(x)| + [log fyo ()]
0co 0co

< sup |logdet X| +sup ||z — | *|Z 74| + [ log feo ()
6co 9co

< sup |log det X[ + sup([l|| + [|]])? sup [|S7"| + | log fyo (2)]
66 66 66

AN

< log(ger)| + (fz]| + e2)?er + [ log foo ()]
=: K(z),

which is a quadratic function of x, not depending on 6. Thus, since the X, ;s are
i.i.d. and normal random variables have all finite moments, A;(0; X,, ;) has bounded
fourth moment, uniformly in ¢, n, and 6. Classical proofs for a strong law with finite
fourth moment applies without change to triangular arrays. The other conditions of
Ferguson’s Theorem 16 are easy to verify, using K(z) as the dominating function. [J

PROOF PROPOSITION 3.1 IN EKVALL AND JONES (2019). Lemma 3
gives that {# € © : 1} = ugo} is a closed set, i = 1,...,s. Thus, the sets D; = {0 €
O: )= yéo} N B:(0%)¢, i = 1,...,s, are closed as intersections of closed sets and
compact as a closed subsets of a compact set, ©. By Lemma 2 we can pick § small
enough that the open covers B; = Ugep,Bs(f) 2 D; have an empty intersection,
N:_yBi = 0. Let A; = ©N B:(0°)°N B¢ and note US_; 4; = © N B(0°)° N (U5, BY) =
O N B(0%)° N (N, Bi)* = © N B.(0°)°. Each A; closed as the intersection of closed
sets, and compact as a closed subset of a compact set, @. By construction, for any
6 € A; it must be that § € Bf C D¢. Since A; is a subset of B.(0°)¢ by construction
this implies 6 € {6 € © : vy = v/}, }*, which finishes the proof. O

2.1. Longitudinal linear mized model.

LEMMA 6. The log-likelihood £,,(0;y) is differentiable in 6 at any interior point of
O, for every n > 1 and every y in the support of Y.

PrOOF. The multivariate normal log-likelihood ¢,(0;Y") is differentiable in its
mean m and covariance matrix C' everywhere C' = C(0) is positive definite [4]. It
is easy to see that C' is positive definite on all interior point since ¥ is (c.f. Lemma
7). Now £,,(0;Y) is differentiable on all interior points by the chain rule since the
elements of m and C are differentiable in 6. O]

PrOOF LEMMA 3.2 IN EKVALL AND JONES (2019). Fix an ¢ > 0 small enough
that all points of B.(A") are interior. By construction of the subcollections, the as-
sumptions of Proposition 3.1 are satisfied with what is there denoted © replaced
by B-(0°). Take A; and Ay to be the compact sets given by that proposition. The
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proof of point 1 is standard [2, p. 115] and hence omitted. Point 2 is proven by
checking the conditions of Lemma 5 with what is there denoted © replaced by the
compact A;,i = 1,2. The following argument works for either subcollection. First
note A\max(C;) = ||Ci(8)]| < [|Cs(0)]| [1]. Since the Frobenius norm is the square
root of the sum of squared entries and the entries are continuous functions of 6,
0 — ||Ci(0)||F is continuous and attains its supremum on the compact set A;, so
|C(8)|| is bounded above on B.(#%). By spectral decomposition of C; it is immediate
that Apnin(Ci) = 1/ )\maX(Cifl). Thus, since C;(0) is clearly positive definite on all in-
terior points and the inverse is a continuous mapping at points where C; is positive
definite [4], we get by the same arguments that Amax(C; '(#)) is bounded on A;. It
is obvious that 6 — m;(#) is continuous and hence attains its supremum on A;. This
concludes the proof of point 2.

It remains to prove point 3. By point 1 we may pick an ¢ > 0 such that, for either
subcollection,

sup N_lE[AN/Q(H; W(i))] = sup E[A1(0;W1i))]/2 < —3e.
GEA-L' GEAZ'

By point 2 we have, P-almost surely and for all large enough N,

QSUE N7HA N2 (65 W) — E[An/2(8; WO <e.
€A

Thus we have that supge 4, An/2(6; W) < —2Ne, and hence that

sup Lz (6; X)) < 72N,
0cA;

for all large enough N, P-almost surely. The last right hand side is clearly o(e™*V) as
N — oo. O

We will use the following results in the proof of Lemma 3.3 in Ekvall and Jones
(2019).

LEMMA 7. The following hold when all points in B.(6°) are interior (the first
inequality in 1 holds always):
1 ||¥||p < T and supgep, (goy 187! F < eVT for some ¢ > 0,
supge . (90) |C(O)]| < exNT + 2T + 3 for some c1,c2,¢3 > 0,
SUPge B, (60) 1C(0)~Y| < ¢ for some ¢ > 0,
supge, (o) | ViZ[ < NT + cI? for some ¢ > 0 and every i > 3.
SuPpe . (90) 1Y — m(0)|| = op(n), and

SURSEINCR

PROOF. 1. The Frobenius norm is the square root of the sum of squared el-
ements, and all elements of ¥ are in the form 6% for some integer k — this
establishes the first inequality. The inverse of ¥ can be written as (1 — 62)~1
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times a tri-diagonal matrix where the diagonal entries are 1 or 1 + 62, and the
leading off-diagonals have entries —f;. Thus, ||¥ !z is the square root of the
sum of 37T possibly non-zero elements, each a continuous function of #. The
inequality now follows from Lemma 4.

2. Using that eigenvalues of the sum of two positive, semi-definite matrices must
be at least as large as those of either summand and that the eigenvalues of
Kronecker products are the products of the multiplicands’ eigenvalues [4], we
get

)\max (C) S Amax(e?yln) + )\max(94IN ® JNT) + )\max(gf)JN & IN ® JT)
+ )\max(HGINQ ® \Ij)
<034+ 0,NT +05NT + 06T,

where in the last step we also used Apax(¥) < ||¥]|p < T by 1. The existence
of the constants ¢, ¢z, c3 now follows from Lemma, 4.

3. Since Z¥XZ" is positive definite, we get Amin(C) = Amin(031, + ZXZT) > 65.
Since all points in B.(6°) are interior, 3 is lower bounded by some ¢! > 0 on
it (Lemma 4). Thus, using that the eigenvalues of C~! are the reciprocals of the
cigenvalues of C, we get ||C~1|p < (nc?)Y/?2 = NVTe.

4. Clearly, V3C(0) = I,, which has eigenvalue 1 with multiplicity n. If i = 4 or
i = b, then the derivative is either Iy ® Jy ® Jr or Jy ® Iy ® Jpr, which
both have maximal eigenvalue NT. If i = 6, then the derivative is ¥ ® Iy>2,
which has maximal eigenvalue less than 1" by 1. If ¢ = 7, then the derivative is
05V7¥. We have V70, ; = |i — |05 717V if [i — j| > 1 and V7¥; ; = 0 otherwise.
Thus, V7, ; < T and, consequently, |[V7¥|r < T2 We conclude, by Lemma
4, V7C(0) < cT? for some ¢ > 0.

5. Let UAUT be the spectral decomposition of C. Then ||Y —m(0)| = |[UT(Y —
m(6))||. The vector UT(Y — m(0)) is multivariate normal with mean 0 and
covariance matrix A. Thus, since a Gaussian process is determined by its fi-
nite dimensional distributions, the stochastic process ||[Y —m(0)|?, 0 € B.(6°),
has the same distribution as the process > i, A;;(0)€2, where &1, ..., &, are
i.i.d. standard normal. By point 2, the supremum of the latter process satisfies
SUDge . (90) Doiey Nii(0)E7 < (ANT + 2T +¢3) Y1y £ = op(n?), which follows
from that the last sum is a positive random variable with mean n, and hence it

converges to zero in L1 when divided by anything of higher order than n.
O

PROOF PROPOSITION 3.3 IN EKVALL AND JONES (2019). Define
e=¢€(0) =Y —m(f) and let V. and V¢ denote differentiation with respect to e
and C. Since e is linear in #; and 62, and C(6) is differentiable in each 6;, i > 3,
bounding the gradient for € is easily done after establishing bounds for V£, (6;Y)
and V£, (0). These derivatives exist for every n because the covariance matrix C(6)
is positive-definite on B.(6°) by Lemma 7 and the multivariate normal log-likelihood
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is differentiable wherever the covariance matrix is non-singular [4]. We have
Veln(0;Y) = —% ot C*leeTC*l] and V0, (0) = —Cle.
Thus,
V1€a(8)] = [Veln(8)TVie(8)] = [eTC71,] < [lel|CH| NPT,
Va2ln(0)] = [Veln(0)V2e(0)] = " C™ ha| < [le][llCTHIN?T/2,
and, for ¢ > 3,
Viln(0)] = |vec[Veln (8)]Tvec|V;C]| = %vec [0—1 + C_leeTC'_l] T vee [Vl
—tr[(C7! + C—leeTc—l)viC}
<NCHEIVClF + leTCTIViC e
< IC7HFIVClle + llel®ICTHP VO,

where vec(-) denotes the vectorization operator stacking the columns of its matrix
argument. Thus, by Lemma 7,
sup |Viln(0)| < sup |le||[|CTHIN?T < op(n)O(NT + T)TN? = op(T3N?),
0B () 0€B:(9)
sup |Valn(0) < sup |lell||CTHIN?T/2 < op(n)O(NT + T)TN? = op(T3NP),
€ B:(9) 0€B:(9)
and, for 7 > 3,
sup [Vilu(0)] < sup (|CTHpIViCllr + [lel*ICTH2VCl).
0eB:(0) 0€B:(0)
By Lemma 7 the supremum of each of the terms in the last line are of at most
polynomial order, which finishes the proof. O

2.2. Logit-Normal MGLMDM.

LEMMA 8. The log-likelihood £, (0;y) is differentiable in 6 on B:(0Y), for every
n > 1 and every y in the support of Y.

PRrOOF. To prove differentiability of fy(y) in @ on B.(6°), checking the usual con-
ditions for differentiation under the integral are sufficient [3, Theorem 2.27]. It’s ob-
vious that fy(y | u)fe(u) is differentiable in 6 on every interior point of ©, so it
suffices to find, for i = 1,...,d, functions K; : R?® x R?N — [0, 00), not depend-
ing on 6, such that |V;fo(y | v)fo(v)| < K;(y,u) and [ K;(y,u)du < oo. Clearly,
IVifoly | w)fo(w)] < Vs fo(y | w)fo(u)|, for any ¢ such that 6; is a component
of f1, and similarly for the components of B5. Thus, it suffices to find bounds for
Vs, foly | w)fo(u)|l, i = 1,2, and |Vg, fo(y | u)fo(u)|. For the purposes of this inte-
gration, the responses y; ;. are constant and the sample size n is fixed. We prove the
existence of integrable bounds in the following forms, where ci,...,cq4 > 0,
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L Kol = evesn (=) 5 (s
1V, fo(y | u)fo(u)l,
7“

w)
(

2. Kaly,u) = cxexp (—guTu) = |V, foly | w)fo(w)], and

aka%>—mwp¢inwyuu+1zw%MMumw»

It is clear that K4, Ko, K3 so defined are integrable because they are, up to scaling,
moments of multivariate normal distributions. Thus, it remains only to prove the
stated inequalities indeed hold.

By the triangle inequality, that fa(y | u) < (27)~™/2, and the fact that fs(u) does
not depend on (1, we have

1+ ol + ) >

IV, foly | w)fo(w)ll = || foly | w)fo(w) Z(yi,j,l = Mij1)Tij
2%
—n/2 —-N 1 T
< (2m) (2m0,) " exp BT
d
(1 2
x 3 (wial + 1Balllill + o] + Dl
i,
The inequality in the definition of K; follows from Lemma 4 upon noting that 6 is
bounded both away from zero and above on interior points, that |51 is similarly
upper bounded on such points, and that ||z; ;|| < 1 by assumption.
For the inequality in the definition of Ky we use that fa(y | u) < (2r)~™/? and that

lyij2 — 1/(1 4 e ™32)| < 1. The latter assertion follows from that v; ;2 € {0,1} and
that 1/(1+ €t) € (0,1) for all t € R. Thus, since fp(u) does not depend on [,

IV fo(y | w)fo(w)ll = || foly | w)fo(w) Y (yij2 — 1/(1+ e "2))z,

]
1
< n(2m) "2 (270,) N exp <20u u) |z ;1.
d

Now the desired inequality follows from again noting the bounds from below and
above of 6 and that ||z, ;|| < 1.

The inequality in the definition of K3 follows similarly. First, fo(y | u) does not
depend on 0 so we get

UTU
Vo fo(y | w) fo(u)| = A >

fo(y | ) fo(u) (_Gd + 262

_ _ u'u\ (N u'u
< (2m)2(270,4) N exp <—29d> <9d + 292> .
d

Now we are done upon again appealing to the lower and upper bounds of 65 on
B(6°). O
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We will need the following lemmas.

LEMMA 9. Let X be a metric space and f : X x R® — R, for some d > 0, be
continuous under the product metric. If X is compact, then h(y) = supycx f(x,y) is
continuous.

PRrROOF. Fix some y and consider the compact set A = X x Bi(y). Since A is
compact, f is uniformly continuous on A. Thus, for any ¢ > 0 we can pick § such
that for every (a/,v'),(2”,y”) € A, it holds that if d((2',v'), (z”,y")) < d, then
|f(@',y") — f(d",y")| < e Thus, for any y’ € Bs(y) € Bi(y), we have [h(y) — h(y')| =
|supgex f(,y) = supgex f(2, )] < supzex [f(z,y) — f(z,9)] = |f(*(y,9),y) —

f@*(y,9),9)] < e, where 2*(y,y') = argmaxgex |f(2,y) — f(x,y/)]. The argmax
exists by Lemma 4 since continuity of f implies continuity in x for every y. O

LEMMA 10. The K-L divergence from a Bernoulli distribution with parameter p
to one with parameter q is lower bounded by 2(p — q)*.

PROOF. By direct computation, the K—L divergence is plog(p/q) + (1 — p) log([1 —
p]/[1 — ¢]). Now using that ¢(1 —t) < 1/4 for all ¢t € R and assuming p > ¢ we get

plog(p/q) + (1 —p)log([1 — pl/[1 —q]) = /qp (Zt) - i:lz) di
-/ (=)
> 4/p(pt)dt

=2(p—q)°

If instead ¢ > p, then the same inequality results from letting 1 — p and 1 — ¢ take
the roles of p and q. If p = ¢, then the inequality is an equality. O

Let C(6,G,| - ||) denote the d-covering number of the set G under the distance
associated with the norm || - ||, that is, the least number of open balls of radius §
needed to cover G.

LEMMA 11 (Theorem 8.2 [5]). Let hi(w,0),ha(w,0),..., 0 € A C O, be inde-
pendent processes with integrable envelopes Hy(w), Ho(w), ..., meaning |h;(w,8)| <
H;(w), for alli and 0 € A. Let H = (Hy,...,Hy) and

Hyw = {[h(@,0), ..., hy(w,0)] € RY : 0 € A}.

If for every € > 0 there exists a K > 0 such that
1. N7! Zfil E[H;I(H; > K)| < € for all N, and
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2. logC(e||H |1, HNw, || - [[1) = op(N) as N — oo,

then
N

sup N~* th‘(wﬁ) — E(hi(w,0)) 50,
feA P

PROOF. Pollard [5] proves this result with packing numbers replaced by covering
numbers. Since [5, p. 10]

Cle, Hnws || - 1) < D&, Hnw, | [1) < Cle/2, Hnw, || - 1),
where D denotes packing numbers, there is nothing more to prove. O

PrROOF LEMMA 3.5 IN EKVALL AND JONES (2019). Let us first prove
that, given ¢ > 0, there exists a ¢ > 0, and hence A; = 4;(¢,(), i = 1,2, such that
point 1 in the lemma holds. The definition of A;(e,() is as in the main text. Let
c(t) = log(1+€') denote the cumulant function in the conditional distribution of ¥;; 2
given the random effects and define

pi(f2,04) =E [CI (‘Tzzﬂ? +1/0a/% (Ui(l) + UJ@))ﬂ '

Recall, E denotes expectation with respect to the distributions indexed by 6°, so
pi(B2,64) is the success probability of Y;; 2 when 5 and 6, are the true parameters.
Note that because the components in W(2) are independent, E[Ax (8; W ()] is a sum
of N terms, each summand being the negative K-L divergence between two Bernoulli
variables with parameters p;(82,64) and pi(ﬁg,ﬁg). Thus, by Lemma 10, Jensen’s
inequality, the reverse triangle inequality, and the triangle inequality, respectively,

N'E[An (6; W)

N
—2NS " [pi(Ba, ) — pi(B5, 09))2

<
i1
] N 2
<-—2|N"! Z pi(B2, 0a) — pi(83,69)]
: 7,;1 9
< -2 |Nt Z |1pi(B2, 0a) — pi(B2,09)| — |pi(59, 6) —pi(ﬂ2,93)|‘]
i i1

- N N 2
(1 <=2 N12!]%(52;%)-%(52792)!—N1Z|Pi(53=92)—pi(52792)\] :
i=1 i=1

Let us work separately with the averages in the last line. We will show that the second
can be made arbitrarily small on As by selecting ¢ small enough, and that the first is
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bounded away from zero on the same As, leading to an asymptotic upper bound on
supgea, N E[An (6; W) away from zero. We start with the first average.

Let H be a compact subset of R such that {L‘Ziﬁz € H for all i and 6 € B.(6°). Such
H exists because the predictors are bounded and S is bounded on B.(#"). Then,
defining p; (7, 64) as pi(B2,04) but with l'z:iﬂg replaced by 7, we get

sup |pi(S2, 0a) — pi(B2,09)| < sup sup |pi(v,0a) — pi(v,09)]-

0cAg 0cAx veH
Since the random variable in the expectation defining p; is bounded by 1 (it is the
mean of a Bernoulli random variable), p; is continuous by dominated convergence.
Thus, since H is compact, sup,¢ g |Pi (7, 0a) — Di(7, 69)] is continuous in 6; by Lemma
9. That is, we can make sup, ¢ [Pi (7, 0a) —Di (7, 69)| arbitrarily small on Ay = As((, )
by picking ¢ small enough, which is what we wanted to show. We next work with the
second average in (1).

By the mean value theorem, for some Bg,i between 32 and 39,

1i(89,69) — pi(B2,09) = [E(" (2], + U + UP))aT (82 — ).
J

Here, differentiation under the expectation is permissible since ¢” is the variance of
a Bernoulli random variable, hence bounded by 1/4, and |z (82 — 89)| < ||lzi.4|/|| B2 —
BY]1? < € on B.(0"). By the same bound on ¢’ we get that E(c¢”(y + Ui(l) + UJ@))) is
continuous in 7. Thus, by Lemma 4, inf,ecpy E(¢"(y + Ui(l) + UJ@))) > ¢ > 0. That
c1 must be positive follows from that ¢” is strictly positive on all of R. We have thus
proven that [p;(59,09) —pi(82,09)| > e1]z] (82 — 89)|, uniformly on B.(6°). Using this
and that ‘%Tz(f32 — BN < |lziillllB2—BY|| < e <1 so that squaring it makes it smaller,

N N
N=UY (pi(B89,69) — piB2, 09)] = AN T |l (B2 — 59))
=1

=1

N
>N (B = B)" <Z xllx;l—z) (B2 — B3)
=1

N
> ClHBQ - BSHQN_I)\min <Z -fz,zl’;l:l)

i=1
which lower limit as N — oo is bounded below by some strictly positive constant, say
¢2, since lim inf N 00 N ™' Amin (ZZ]L :rmxlTZ) > c3 > 0, for some c3, and |32 — Y]] >
€/2 > 0 on Ay. To summarize, we may pick ¢ so small that the second average in (1) is
less than c3/2, say, and hence get supge 4, N 7 E[An (6; W®)] < —2(cp — ¢2/2)? < 0,
for all but at most finitely many N. This proves point 1 as it pertains to As.

Consider next

Ay =9B-(0°) N ({0 64— 09 > ¢} U{0: 82— BI|| < /2})
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and W), Similarly to for W, E[Ax(8; WM)] can due to independence be written
as a sum of N terms in the form

E{log[fo(Yi.i1)/foo(Yii1)]}
1 [log (1 + 29d) 1+ 269 + [2] (B2 — B9)]?

2 ==
@) 2 1+ 269 1+ 26,

-1,

which is the negative K-L divergence between two univariate normal distributions.
Let us consider the possible values this can take for 6 € Ay. If |65 — 69| > ¢, then (2)
is upper bounded by what is obtained when $; = 37. This in turn is a continuous
function in #, and hence attains its supremum on the compact set {4 : ¢ < |0;—69| <
¢}, and hence on A;. This supremum is strictly positive because the divergence can
be zero only if 65 = 69. If instead |32 — B9 < £/2. Then either |65 — 09 > /4 or
181 — BY]| > /4, for otherwise it cannot be that [|§ — 6°|| = e. If |0, — 69| > £/4 the
divergence in (2) has a lower bound away from zero by the same argument as for the
cases |0g — 09| > (. It remains to deal with the case |81 — Y]] > /4.
Write [%Tz(ﬁ? —B1))? = (B9 — B1) Tz ] (B) — B1) to see that

—2N AN (6; W)

is equal to

<1 + 29d> n 14205+ N7'0 (80 = B)Taaa] (B) = B1) )

1+ 269 1+ 26y
which has a lower limit that is greater than

| (1 + 29d> 14 2609 + c3(e/4)*
O —_—

1.
1+ 2609 14264

This expression is in turn maximized in 64 at 65 = 69 + c3(c/16)?; this follows from
a straightforward optimization in 1 + 26,;. The corresponding maximum evaluates to
log(1 + 269 + c3(e/4)%) — log(1 4 269) > 0. This finishes the proof of point 1.

The proof of point 2 consists of checking the conditions of Lemma 11. We first work
with A; and W), Let h;(w, ) = log[fo(Yii1(w))/fao (Yii1(w))] be the log-likelihood
ratio for the 7th observation in the first subcollection, i = 1,..., N. We equip Hy .,
with the L; norm || - ||1, and © is equipped with the Lo norm as before. To facilitate
checking the two conditions we will first derive envelopes with the following properties:
SUP_ s cjcoo EHF < 00 for every k > 0, sup_,c;coo P(H; > K) — 0 as K — 0, and
each h;(w,0) is H;-Lipschitz in 6 on B.(0"), and hence on Ay, for every w. We start
with the Lipschitz property.

Let us use the slight abuse of notation that y; ;1 = Y;; 1(w). Since the distribution of
W@ does not depend on S we have Vg, hi(w,0) = 0, and for some ¢y, ca, ¢3,¢4,¢5 > 0
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(depending on ¢), and every 6 € B.(0"),

1V, hi(w, 0)|| = || (yiin — x3B1) w3/ (1 +204)|| < elyiinl + c2

1 1
Vo, hi(w,0)] = 21520, (Yii1 — $Zi51)2/(1 + 26,)*
< ez + ey )2

The existence of these constants follow from Lemma 4. Let H; be the sum of the
bounds, i.e.

Hi(w) = e1lyii] + 2+ e+ ca(|yiin] +e5)*

By the mean value theorem, |hi(w, ) — hi(6',w)| = |(0 — &) TVhi(w, )| < ||6 — 0'||H;
for some 6 between 6 and @'. That is, h; is H;-Lipschitz on B.(6°). That H; is an
envelope for h; follows from noting that h;(w,8°) = 0 so by taking ¢’ = 6° in the
previous calculation, |h;(w,0)| < H;[|0 — 0°|| < H; on B-(6°). That sup; E(HF) < oo
for every k > 0 and sup, P(H; > K) — 0 as K — oo follow from that Yj;; is
normally distributed with variance 1 4 29 , not depending on ¢, and mean satisfying
1821 < 2].B8Y < 18Y]|. We are now ready to check the conditions of Lemma 11.

By the Cauchy Schwartz inequality and the properties just derived, we have for
every fixed N that

N
N™'N E[HI(H; > K)] < sup E[H|sup P(H; > K) — 0, K — o0,
7

i—1 i

which verifies the first condition.
For the second condition, note that the derived Lipschitz property gives, for arbi-
trary h = (hi(w,0),...,hn(w,0)) and ' = (hi(w,0),...,hn(w,0")) in Hy

N
Ih = hlly = |hi(w, 0) = hi(w, ")
=1

Z 16 — 6'|| Hy (w

H9 O'[[IIH s

=

Thus, if we cover dB.(0°) with e-balls with centers 67, j =1,..., M,
then the corresponding L; balls in RV of radius €||H||; with centers

W = (hi(w,09),... hy(w,67))

cover Hy . This is so because for every § € 9B.(0°) there is a 67 such that [0 —
7] < ¢, and hence by the Lipschitz property ||h(w,8) — h(w,07)|1 < |H|/1e. Thus,
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ClellH |11, Hnw, || - 1) < C(e,0B=(6°), | - ||)- Since C(e,dB(6°),] - ||) is constant in
N, the second condition of Lemma 11 is verified for A; and W)

The arguments for Ay and W) are similar, redefining h; (w,0) with Y; ; 1 replaced
by Y112, taking As in place of A;, and so on. We need only prove the existence of
envelopes Hy, ..., Hy with the desired properties. Using that |y; jo — ¢/ (ni2.1)]] <1
and that fo(yii2 | w)fo(w)/ fo(yiiz2) = fo(u | yi2) one gets,

1V s, B)]] = Hv@ 08 [ founas | S

‘ f@ yz,z,Z
< ol < 1.

/fe Yii2 | w) fo(w)yiie — ¢ (mij2)]@iidu

Using that Ui(l) and U ](2) are the only random effects entering the linear predictor
nz',j,?a and that f()(yi,j,Q | u) S 1,

‘vedhi(wve)’
(1)y2 (2)\2
(1) 2) (u; )"+ (u;”) 1
1,1 , U - d
f6‘ Yii,2 /f@ Y2 | U)fe( ) ( 292 04 b
(1)y2 (2)\2
+ N

< 1 /fg(ugl (2)) (u; ")+ (u;”) du + 1

204 fo(yii2) 04 04

1 1

Oafo(yij2) Oa

By Lemma 4 the quantity in the last line attains its supremum on B.(6°). This max-
imum is finite for both y;;2 = 1 and y; ;2 = 0 since the marginal success probability
cannot be one or zero on interior points of ©. Thus, on B (6°), [|[Vh;(w,8)]| is bounded
by a constant, say H, the largest needed for the two cases y; ;2 = 0 and y; ;2 = 1. By
setting H; = H,© = 1,..., N, we have envelopes with the right properties and this
completes the proof of point 2.

Finally, we prove point 3. Consider without loss of generality the first subset and
subcollection. For economical notation we write Ly (0) = Ly (0; W) and Ay (0) =
An(0; W), Point 1 gives that supge 4, E[An(6)] < —3e for some € > 0 and all large
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enough N. Assuming that IV is large enough that this holds, we get

P <eEN sup Ly (0) > €6N> =P <N1 sup An(0) > —26)
A, fcAy

<P (N_l sup Ay (0) > e+ sup E[AN(G)])
0 Ay 0€Ay

P (N_l sup Ay (0) — sup E[AN(0)] > 6)

0cAq e Ay
<P (¥ sup law(6) ~ EIAN (0] > )
0cAy
which vanishes as N — oo by point 2. Thus, since e~V — 0,

N sup L, (6) 5o.
e Ay

O]

PrROOF LEMMA 3.6 IN EKVALL AND JONES (2019). We will find a Lipschitz con-
stant (random variable) with the desired properties by bounding ||V log fo(y)||. We
first consider derivatives with respect to 6,. Define

70) = o) olo) = | feylueXp< )d

.
/fay!u exp( )Zegdu.

Then Vg, ,J"(0) = K"(8), and hence

and

Vo, log fo(y) = Vg, log[(2m0y) N J"(0)] = —— +

We focus on the second term first. Let A, = {u € R2N . Ty < an} for some constant
an (depending on the total sample size n). Let K} (6) be the integral defining K"(0)
restricted to A, and let KZ(0) be the same integral but instead restricted to A¢ so
that K"(0) = K7 (0) + K5(6). Then, since the integrands are non-negative,

.
Ja, foly | ) exp (—%) e,

K7(0)/77(0) = <
' [ fo(y | u)exp ( ) du 2‘93

and, hence,

N  a, K0

1 < — 4+ — .
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On A¢ we have by definition that u'u > u'u/2 + a,,/2. Thus, using that fa(y | u) <
(2m) "2,

T

/ foly | u) exp< 59,8 u/2—|—an/2)> 3

W@ 49d/f9y|uexp< >uTudu
1 T

W@ sy (2m)~ "/2/exp < ugu) u'u du
d

_ 1 ¢ il (2m) "2 (4m0)N /(4779d)_Nexp fUT—u ulu du
92 46,4

IN

IN

2

®) = e B ana)”

Using Lemma 4, (3) can be upper bounded on B.(6°) by h} = exp(cian +con+c3N +
cqlog N + ¢5) for some constants c¢q, . .., ¢s. It will be important later to note that the
constant c; is negative in this expression.

We next derive a lower bound on J*(6). To that end, let B, = {u € R : |y;| <
1,4 = 1,...,N}. Since the integrand in J"(0) is positive, we may lower bound it
by the same integral restricted to B,. We then get, using that exp(—uTu/(264)) >
exp(—N/04)) on B, and that Lebesgue measure of By, is 4V,

1(6) > exp (—Z) / oty )

(4) > ¢ (2) 2

xexp | =Y u21/2+ lyigal(jel;B1l +2) + (Jaf;61] + 2)°

0]

(5) xexp [ = |yijal(|z];B2] +2) +log(1+ eleiif2l 4 9) | 4N,

0.
Here, the last inequality lower bounds all terms in the exponent by minus their
absolute values. Again using Lemma 4, that the predictors are bounded, and that
lyij2l < 1, we thus see that J"(f) can be lower bounded on B:(0°) by h3(y) =
exp(cgN + crn + cg Z” yz'%j,l + ¢ Z” lyi j1| + c10), for some constants cg, ..., cio.
Thus, by lower bounding 6, > 01_11 on B.(0°) for some ¢11 > 0 we get

hn
sup |V, log fo(y)| < cuulN + 5 1an/2 +
0cB.(0°) hy (y)

Now, take a, = n'*</2 for some € > 0. Then the first two terms are O(ay,) as n — oo.

Moreover, since »_; Elejl < n(1+2609) +n|BY| = O(n) by boundedness of the
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predictors, both sums in the exponent of h'/h3(y) converges to zero in L; if divided
by an, and hence also in probability. It follows from the continuous mapping theorem
that hi/h%(y) = Op(1) since, as remarked above, ¢; < 0. We have thus proven that
Supge . (90) | Vo, 108 fo(y)| = Op(an) = op(n'™¢), for every € > 0.

For 31 we get by using the triangle inequality, boundedness of the predictors, (1 —
t) < 1/4,t € R, and fo(y | u)fo(u)/fo(y) = fo(u|y),

1V, log foly)]| = f;y) / Folw | 9 o) YTyt — e sdu

1:7.]'

IN

1
> (Wiga —zl;80)| + My)/fe(y | u)fg(u)%;ugl)+u§2)|du

7:7j

IN

Z(yi,j,l — ;1)

L U U u(l) 2 ’LL(2) 2 U
" fe(y)/fe(y| Vfo(u) Y 11/2+ (u))? + (uj”)?]d

1,7
- Z<y T 8| 42+ f;y) / foly | 0) folwuTudu

K" (0)
4J(0)

= Z(yi7]‘71—$zj51) +n/2+29
1:7j

Thus, by Lemma 4 and the same arguments as for Vy, log fy(y) we get that

sup ||V, log fo(Y)|| = op(n'™)
9 B.(89)

for any € > 0.
Finally, by the triangle inequality and that |y; j2 — ¢ (;;2)] < 1 for all ¢ and j,

1
IV lox fo(0)| = |+ / foly | ) Z[y (i) fo(w)du
n

<
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