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This note contains additional results and more detailed proofs of
some results in ”Consistent Maximum Likelihood Estimation Using
Subsets with Applications to Multivariate Mixed Models”. Through-
out, we refer to that article as Ekvall and Jones (2019).

1. Theory. Results in this section pertain primarily to Section 2 in Ekvall and
Jones (2019).

1.1. Preliminary results. We present some lemmas that are used when proving
the main results.

Lemma 1. For any positive random variables X, Y , Z, defined on the same prob-
ability space, and c > 0, P(XY ≥ Z) ≤ P(X ≥ c) + P(Y ≥ Z/c).

Proof. If for positive constants x, y, z, c it holds that xy ≥ z, then either x ≥ c
or y ≥ z/c, since otherwise xy < c(z/c) = z. Thus, {ω : X(ω)Y (ω) ≥ Z(ω)} ⊆ {ω :
X(ω) ≥ c} ∪ {ω : Y (ω) ≥ Z(ω)/c}. By sub-additivity of measures, P(XY ≥ Z) ≤
P({X ≥ c} ∪ {Y ≥ Z/c}) ≤ P(X ≥ c) + P(Y ≥ Z/c).

Lemma 2. Suppose Ai, i = 1, . . . , n are compact subsets of some metric space
(T , dT ) such that ∩ni=1Ai = ∅, then the open covers Ci = ∪x∈AiBδ(x), i = 1, . . . , s,
also have an empty intersection for all small enough δ > 0.

Proof. Consider the covers Ck,i = ∪x∈AiB1/k(x), k = 1, 2, . . . , i = 1, . . . , n. If
Ck = ∩iCk,i = ∅ for some k <∞, then we are done. Suppose for contradiction Ck is
non-empty for every k <∞. By construction, every point xk ∈ Ck is within 1/k of at
least one point in every Ai. That is, we can pick, for every k ≥ 1 and i = 1, . . . , n, an
xk ∈ Ck and yk,i ∈ Ai such that d(xk, yk,i) ≤ 1/k. Thus, by the triangle inequality,
for every k, d(yk,i, yk,j) ≤ 2/k. By compactness of A1, say, yk,1 has a convergent
subsequence ykm,1 → y1 as m→∞, for some y1 ∈ A1 by the fact that A1 is closed as
a compact subset of a metric space. But then, for every i, by the triangle inequality,
d(ykm,i, y1) ≤ d(ykm,i, ykm,1)+d(ykm,1, y1) ≤ 2/km+d(ykm,1, y1)→ 0 as m→∞. Thus,
since every Ai is closed, y1 ∈ Ai for every i, which is the desired contradiction.

Lemma 3. Suppose Θ is a compact subset of some metric space and, for every
θ ∈ Θ, fθ is a probability density against some dominating measure ν which does not
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depend on θ. Suppose also that fθ(x) is continuous in θ for every x and define the
measures νθ by νθ(A) =

∫
A fθ(x)dν(x) for any ν-measurable A. Then for any θ0 ∈ Θ,

the set Θ0 = {θ ∈ Θ : νθ = νθ0} is compact.

Proof. Because Θ is a compact subset of a metric space, it suffices to show that
Θ0 is closed. Note that Θ0 always includes the point θ0 and is thus non-empty. Pick
an arbitrary converging sequence θn ∈ Θ0, call the limit point θ?. By continuity of
θ 7→ fθ(x) for every x, fθn → fθ? pointwise. Now for any ν-measurable A, |νθ?(A) −
νθ0(A)| ≤ |νθ?(A) − νθn(A)| + |νθ0(A) − νθn(A)| = |νθ?(A) − νθn(A)|, which vanishes
as n → ∞ by a generalized dominated convergence theorem [6, Theorem 19] – the
dominating sequence of functions for which the integrals converge can be fθn(x) ≥
fθn(x)IA(x) – so indeed θ? ∈ Θ0.

1.2. Main results. For economical notation in the proofs we write fθ(y) = fnθ (y),
fθ(yi) = fθ,i(yi), fθ(w) = gθ(w), fθ(u) = φrθ(u), and so on. That is, the letter f is
overloaded and the argument indicates which density we are referring to.

Proof Lemma 2.1 in Ekvall and Jones (2019). Let Y = (W,Z),
where Z consists of the components of Y that are not in the subcollection W . Then
fθ(y) = fθ(w, z) and by (conditional) Markov’s inequality, for any k > 0,

P (Ln(θ;Y ) ≥ c |W ) ≤ c−1E (Ln(θ;Y ) |W ) = c−1E

(
fθ(W,Z)

fθ0(W,Z)
|W

)
.

Now the following calculation shows the random variable

Lm(θ;W ) = fθ(W )/fθ0(W )

is a version of E (fθ(W,Z)/fθ0(W,Z) |W ):∫
Z

fθ(w, z)

fθ0(w, z)
fθ0(z | w)νZ(dz) =

∫
Z

fθ(w, z)

fθ0(w, z)

fθ0(w, z)

fθ0(w)
νZ(dz)

=

∫
Z

fθ(w, z)

fθ0(w)
νZ(dz)

=
fθ(w)

fθ0(w)
,

where νZ is the measure against which the components in Z have joint density fθ(z)
and Z is the range space of Z. Since the conditional expectation is unique up to P-null
sets, this finishes the proof.

Proof of Lemma 2.2 in Ekvall and Jones (2019). Fix some arbitrary ε >
0. If supθ∈Ai Ln(θ;Y ) < 1 for i = 1, . . . , s, then, since Ln(θ0;Y ) = 1, there are no
global maximizers in ∪si=1Ai ⊇ Θ ∩Bε(θ0)c. Thus, it suffices to prove

P

(
s⋃
i=1

{
sup
θ∈Ai

Ln(θ;Y ) ≥ 1

})
≤

s∑
i=1

P

(
sup
θ∈Ai

Ln(θ;Y ) ≥ 1

)
→ 0.
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Since s is fixed it is enough that P
(
supθ∈Ai Ln(θ;Y ) ≥ 1

)
→ 0 for every i = 1, . . . , s.

Without loss of generality, consider i = 1. Pick a cover of A1 as given by Assumption
3 and, for every ball in the cover, pick a θj in the intersection of that ball with A1. If
there are some balls that do not intersect A1, they may be discarded from the cover,
so we assume without loss of generality that all balls do intersect A1. We then get
Mn,1 points such that every point in A1 is within δn,1 of at least one of them. For any
θ ∈ A1, let θj(θ) denote the θj closest to it (pick an arbitrary one if there are many).
Using the Lipschitz continuity given by Assumption 2 and that x 7→ ex is increasing
we have,

P

(
sup
θ∈A1

Ln(θ;Y ) ≥ 1

)
= P

(
sup
θ∈A1

Λn(θ;Y ) ≥ 0

)
= P

(
sup
θ∈A1

`n(θ;Y ) ≥ `n(θ0;Y )

)
,

which is upper bounded by

≤ P

(
sup
θ∈A1

[
`n(θj(θ);Y ) +Kn,1dT (θ, θj(θ))

]
≥ `n(θ0;Y )

)
.

Because there are only Mn,1 points θj , and dT (θj(θ), θ) ≤ δn,1 since θj(θ) is the one
closest to θ, we get that the last line is upper bounded by

P

(
max
j≤Mn,1

[
`n(θj ;Y ) +Kn,1δn,1

]
≥ `n(θ0;Y )

)
= P

(
max
j≤Mn,1

fθj (Y )eKn,1δn,1 ≥ fθ0(Y )

)
.

But by applying Lemma 1 with c = 2,

P

(
max
j≤Mn,1

fθj (Y )eKn,1δn,1 ≥ fθ0(Y )

)
≤ P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
+ P

(
eKn,1δn,1 ≥ 2

)
= P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
+ o(1)

where the last line uses Assumption 3. The choice of the constant 2 in the application
of Lemma 1 is arbitrary – any number with positive logarithm works. The remaining
term,

P

(
2 max
j≤Mn,1

fθj (Y ) ≥ fθ0(Y )

)
= P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2

)
,
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we will deal with using Lemma 2.1 and dominated convergence. After conditioning
on W (1) we have

P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2 |W (1)

)
≤

Mn,1∑
i=1

2Lm1(θj ;W (1))

≤ 2Mn,1 sup
θ∈A1

Lm1(θ,W (1)),

P-almost surely, where the first inequality is by subadditivity and Lemma 2.1, and the
second uses that Ln(θj ;W (1)) ≤ supθ∈A1

Lm1(θ;W (1)) by definition. The expression
in the last line vanishes as n→∞ by Assumption 3. Thus,

P

(
max
j≤Mn,1

Ln(θj ;Y ) ≥ 1/2

)
→ 0

by dominated convergence. The dominating function can be the constant 1. This
finishes the proof.

2. Applications. Results in this section pertain primarily to Section 3 in Ek-
vall and Jones (2019). Let λmax(·) and λmin(·) denote the maximum and minimum
eigenvalue of its matrix argument, respectively. For matrices, ‖·‖ denotes the spectral
norm and ‖ · ‖F the Frobenius norm. Differentiation with respect to θi is denoted ∇i.

We will use the following well known fact repeatedly. It is stated as a lemma for
easy reference.

Lemma 4. If h is a continuous function from some metric space X to R and A
is a compact subset of X , then supx∈A h(x) = h(x?) for some x? ∈ A. In particular,
if h(x) < c for some constant c and every x ∈ A, then supx∈A h(x) < c.

Of course, the same holds if the supremum is replaced by an infimum or if less than
is replaced by greater than.

Lemma 5. Let Xn,1, . . . , Xn,n be a triangular array with rows of i.i.d. multivariate
normal q-vectors with mean E(Xn,i) = µ = µ(θ) and covariance matrix cov(Xn,i) =
Σ = Σ(θ), θ ∈ Θ. Suppose that

0 < 1/c1 ≤ inf
θ∈Θ

λmin(Σ(θ)) ≤ sup
θ∈Θ

λmax(Σ(θ)) ≤ c1 <∞

and supθ∈Θ ‖µ(θ)‖ ≤ c2 for some c1, c2 ∈ (0,∞), then

sup
θ∈Θ

∣∣∣∣∣n−1
n∑
i=1

{Λi(θ;Xn,i)− E[Λ1(θ;Xn,1)]}

∣∣∣∣∣→ 0,

P-almost surely, where Λi(θ;Xn,i) = log fθ(Xn,i)/fθ0(Xn,i), and fθ(Xn,i) means the
density for Xn,i evaluated at Xn,i.
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Proof. Theorem 16 in Ferguson [2] applies almost verbatim to triangular arrays
in place of i.i.d. sequences. The only necessary modification to its proof is that the
pointwise strong law of large numbers needs to be motivated. Write

sup
θ∈Θ
|Λ1(θ;x)| ≤ sup

θ∈Θ
| log fθ(x)|+ | log fθ0(x)|

≤ sup
θ∈Θ
| log det Σ|+ sup

θ∈Θ
‖x− µ‖2‖Σ−1‖+ | log fθ0(x)|

≤ sup
θ∈Θ
| log det Σ|+ sup

θ∈Θ
(‖x‖+ ‖µ‖)2 sup

θ∈Θ
‖Σ−1‖+ | log fθ0(x)|

≤ | log(qc1)|+ (‖x‖+ c2)2c1 + | log fθ0(x)|
=: K(x),

which is a quadratic function of x, not depending on θ. Thus, since the Xn,is are
i.i.d. and normal random variables have all finite moments, Λi(θ;Xn,i) has bounded
fourth moment, uniformly in i, n, and θ. Classical proofs for a strong law with finite
fourth moment applies without change to triangular arrays. The other conditions of
Ferguson’s Theorem 16 are easy to verify, using K(x) as the dominating function.

Proof Proposition 3.1 in Ekvall and Jones (2019). Lemma 3
gives that {θ ∈ Θ : νiθ = νiθ0} is a closed set, i = 1, . . . , s. Thus, the sets Di = {θ ∈
Θ : νiθ = νiθ0} ∩ Bε(θ

0)c, i = 1, . . . , s, are closed as intersections of closed sets and
compact as a closed subsets of a compact set, Θ. By Lemma 2 we can pick δ small
enough that the open covers Bi = ∪θ∈DiBδ(θ) ⊇ Di have an empty intersection,
∩si=1Bi = ∅. Let Ai = Θ∩Bε(θ0)c ∩Bc

i and note ∪si=1Ai = Θ∩Bε(θ0)c ∩ (∪si=1B
c
i ) =

Θ ∩ Bε(θ0)c ∩ (∩si=1Bi)
c = Θ ∩ Bε(θ0)c. Each Ai closed as the intersection of closed

sets, and compact as a closed subset of a compact set, Θ. By construction, for any
θ ∈ Ai it must be that θ ∈ Bc

i ⊆ Dc
i . Since Ai is a subset of Bε(θ

0)c by construction
this implies θ ∈ {θ ∈ Θ : νiθ = νiθ0}

c, which finishes the proof.

2.1. Longitudinal linear mixed model.

Lemma 6. The log-likelihood `n(θ; y) is differentiable in θ at any interior point of
Θ, for every n ≥ 1 and every y in the support of Y .

Proof. The multivariate normal log-likelihood `n(θ;Y ) is differentiable in its
mean m and covariance matrix C everywhere C = C(θ) is positive definite [4]. It
is easy to see that C is positive definite on all interior point since Ψ is (c.f. Lemma
7). Now `n(θ;Y ) is differentiable on all interior points by the chain rule since the
elements of m and C are differentiable in θ.

Proof Lemma 3.2 in Ekvall and Jones (2019). Fix an ε > 0 small enough
that all points of B̄ε(θ

0) are interior. By construction of the subcollections, the as-
sumptions of Proposition 3.1 are satisfied with what is there denoted Θ replaced
by B̄ε(θ

0). Take A1 and A2 to be the compact sets given by that proposition. The
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proof of point 1 is standard [2, p. 115] and hence omitted. Point 2 is proven by
checking the conditions of Lemma 5 with what is there denoted Θ replaced by the
compact Ai, i = 1, 2. The following argument works for either subcollection. First
note λmax(Ci) = ‖Ci(θ)‖ ≤ ‖Ci(θ)‖F [1]. Since the Frobenius norm is the square
root of the sum of squared entries and the entries are continuous functions of θ,
θ 7→ ‖Ci(θ)‖F is continuous and attains its supremum on the compact set Ai, so
‖C(θ)‖ is bounded above on B̄ε(θ

0). By spectral decomposition of Ci it is immediate
that λmin(Ci) = 1/λmax(C−1

i ). Thus, since Ci(θ) is clearly positive definite on all in-
terior points and the inverse is a continuous mapping at points where Ci is positive
definite [4], we get by the same arguments that λmax(C−1

i (θ)) is bounded on Ai. It
is obvious that θ 7→ mi(θ) is continuous and hence attains its supremum on Ai. This
concludes the proof of point 2.

It remains to prove point 3. By point 1 we may pick an ε > 0 such that, for either
subcollection,

sup
θ∈Ai

N−1E[ΛN/2(θ;W (i))] = sup
θ∈Ai

E[Λ1(θ;W
(i)
1 )]/2 < −3ε.

By point 2 we have, P-almost surely and for all large enough N ,

sup
θ∈Ai

N−1|ΛN/2(θ;W (i))− E[ΛN/2(θ;W (i))]| ≤ ε.

Thus we have that supθ∈Ai ΛN/2(θ;W (i)) < −2Nε, and hence that

sup
θ∈Ai

LN/2(θ;X(i)) ≤ e−2Nε,

for all large enough N , P-almost surely. The last right hand side is clearly o(e−εN ) as
N →∞.

We will use the following results in the proof of Lemma 3.3 in Ekvall and Jones
(2019).

Lemma 7. The following hold when all points in B̄ε(θ
0) are interior (the first

inequality in 1 holds always):

1. ‖Ψ‖F ≤ T and supθ∈B̄ε(θ0) ‖Ψ−1‖F ≤ c
√
T for some c > 0,

2. supθ∈B̄ε(θ0) ‖C(θ)‖ ≤ c1NT + c2T + c3 for some c1, c2, c3 > 0,

3. supθ∈B̄ε(θ0) ‖C(θ)−1‖ ≤ c for some c > 0,

4. supθ∈B̄ε(θ0) ‖∇iΣ‖ ≤ NT + cT 2 for some c > 0 and every i ≥ 3.
5. supθ∈B̄ε(θ0) ‖Y −m(θ)‖ = oP(n), and

Proof. 1. The Frobenius norm is the square root of the sum of squared el-
ements, and all elements of Ψ are in the form θk7 for some integer k – this
establishes the first inequality. The inverse of Ψ can be written as (1 − θ2

7)−1
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times a tri-diagonal matrix where the diagonal entries are 1 or 1 + θ2
7, and the

leading off-diagonals have entries −θ7. Thus, ‖Ψ−1‖F is the square root of the
sum of 3T possibly non-zero elements, each a continuous function of θ. The
inequality now follows from Lemma 4.

2. Using that eigenvalues of the sum of two positive, semi-definite matrices must
be at least as large as those of either summand and that the eigenvalues of
Kronecker products are the products of the multiplicands’ eigenvalues [4], we
get

λmax (C) ≤ λmax(θ3In) + λmax(θ4IN ⊗ JNT ) + λmax(θ5JN ⊗ IN ⊗ JT )

+ λmax(θ6IN2 ⊗Ψ)

≤ θ3 + θ4NT + θ5NT + θ6T,

where in the last step we also used λmax(Ψ) ≤ ‖Ψ‖F ≤ T by 1. The existence
of the constants c1, c2, c3 now follows from Lemma 4.

3. Since ZΣZT is positive definite, we get λmin(C) = λmin(θ3In + ZΣZT) ≥ θ3.
Since all points in B̄ε(θ

0) are interior, θ3 is lower bounded by some c−1 > 0 on
it (Lemma 4). Thus, using that the eigenvalues of C−1 are the reciprocals of the
eigenvalues of C, we get ‖C−1‖F ≤ (nc2)1/2 = N

√
Tc.

4. Clearly, ∇3C(θ) = In which has eigenvalue 1 with multiplicity n. If i = 4 or
i = 5, then the derivative is either IN ⊗ JN ⊗ JT or JN ⊗ IN ⊗ JT , which
both have maximal eigenvalue NT . If i = 6, then the derivative is Ψ ⊗ IN2 ,
which has maximal eigenvalue less than T by 1. If i = 7, then the derivative is

θ6∇7Ψ. We have ∇7Ψi,j = |i− j|θ|i−j|−1
7 if |i− j| ≥ 1 and ∇7Ψi,j = 0 otherwise.

Thus, ∇7Ψi,j ≤ T and, consequently, ‖∇7Ψ‖F ≤ T 2. We conclude, by Lemma
4, ∇7C(θ) ≤ cT 2 for some c > 0.

5. Let UΛUT be the spectral decomposition of C. Then ‖Y −m(θ)‖ = ‖UT(Y −
m(θ))‖. The vector UT(Y − m(θ)) is multivariate normal with mean 0 and
covariance matrix Λ. Thus, since a Gaussian process is determined by its fi-
nite dimensional distributions, the stochastic process ‖Y −m(θ)‖2, θ ∈ B̄ε(θ0),
has the same distribution as the process

∑n
i=1 Λi,i(θ)ξ

2
i , where ξ1, . . . , ξn are

i.i.d. standard normal. By point 2, the supremum of the latter process satisfies
supθ∈Bε(θ0)

∑n
i=1 Λi,i(θ)ξ

2
i ≤ (c1NT + c2T + c3)

∑n
i=1 ξ

2
i = oP(n2), which follows

from that the last sum is a positive random variable with mean n, and hence it
converges to zero in L1 when divided by anything of higher order than n.

Proof Proposition 3.3 in Ekvall and Jones (2019). Define
e = e(θ) = Y − m(θ) and let ∇e and ∇C denote differentiation with respect to e
and C. Since e is linear in θ1 and θ2, and C(θ) is differentiable in each θi, i ≥ 3,
bounding the gradient for θ is easily done after establishing bounds for ∇C`n(θ;Y )
and ∇e`n(θ). These derivatives exist for every n because the covariance matrix C(θ)
is positive-definite on B̄ε(θ

0) by Lemma 7 and the multivariate normal log-likelihood
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is differentiable wherever the covariance matrix is non-singular [4]. We have

∇C`n(θ;Y ) = −1

2

[
C−1 + C−1eeTC−1

]
and ∇e`n(θ) = −C−1e.

Thus,

|∇1`n(θ)| = |∇e`n(θ)T∇1e(θ)| = |eTC−11n| ≤ ‖e‖‖C−1‖N2T,

|∇2`n(θ)| = |∇e`n(θ)T∇2e(θ)| = |eTC−1hn| ≤ ‖e‖‖C−1‖N2T/2,

and, for i ≥ 3,

|∇i`n(θ)| = |vec[∇C`n(θ)]Tvec[∇iC]| = 1

2
vec
[
C−1 + C−1eeTC−1

]T
vec [∇iC] |

= tr
[
(C−1 + C−1eeTC−1)∇iC

]
≤ ‖C−1‖F ‖∇iC‖F + |eTC−1∇iC−1e|
≤ ‖C−1‖F ‖∇iC‖F + ‖e‖2‖C−1‖2‖∇iC‖,

where vec(·) denotes the vectorization operator stacking the columns of its matrix
argument. Thus, by Lemma 7,

sup
θ∈B̄ε(θ)

|∇1`n(θ)| ≤ sup
θ∈B̄ε(θ)

‖e‖‖C−1‖N2T ≤ oP(n)O(NT + T )TN2 = oP(T 3N5),

sup
θ∈B̄ε(θ)

|∇2`n(θ)| ≤ sup
θ∈B̄ε(θ)

‖e‖‖C−1‖N2T/2 ≤ oP(n)O(NT + T )TN2 = oP(T 3N5),

and, for i ≥ 3,

sup
θ∈B̄ε(θ)

|∇i`n(θ)| ≤ sup
θ∈B̄ε(θ)

(‖C−1‖F ‖∇iC‖F + ‖e‖2‖C−1‖2‖∇iC‖).

By Lemma 7 the supremum of each of the terms in the last line are of at most
polynomial order, which finishes the proof.

2.2. Logit-Normal MGLMM.

Lemma 8. The log-likelihood `n(θ; y) is differentiable in θ on B̄ε(θ
0), for every

n ≥ 1 and every y in the support of Y .

Proof. To prove differentiability of fθ(y) in θ on B̄ε(θ
0), checking the usual con-

ditions for differentiation under the integral are sufficient [3, Theorem 2.27]. It’s ob-
vious that fθ(y | u)fθ(u) is differentiable in θ on every interior point of Θ, so it
suffices to find, for i = 1, . . . , d, functions Ki : R2n × R2N → [0,∞), not depend-
ing on θ, such that |∇ifθ(y | u)fθ(u)| ≤ Ki(y, u) and

∫
Ki(y, u)du < ∞. Clearly,

|∇ifθ(y | u)fθ(u)| ≤ ‖∇β1fθ(y | u)fθ(u)‖, for any i such that θi is a component
of β1, and similarly for the components of β2. Thus, it suffices to find bounds for
‖∇βifθ(y | u)fθ(u)‖, i = 1, 2, and |∇θdfθ(y | u)fθ(u)|. For the purposes of this inte-
gration, the responses yi,j,k are constant and the sample size n is fixed. We prove the
existence of integrable bounds in the following forms, where c1, . . . , c4 > 0,
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1. K1(y, u) = c1 exp
(
− 1

2c2
uTu

)∑
i,j

(
|yi,j,1|+ 1 + |u(1)

i |+ |u
(2)
j |
)
≥

‖∇β1fθ(y | u)fθ(u)‖,
2. K2(y, u) = c3 exp

(
− 1

2c2
uTu

)
≥ ‖∇β2fθ(y | u)fθ(u)‖, and

3. K3(y, u) = c4 exp
(
− 1

2c2
uTu

)
(uTu+ 1) ≥ |∇θdfθ(y | u)fθ(u)|.

It is clear that K1,K2,K3 so defined are integrable because they are, up to scaling,
moments of multivariate normal distributions. Thus, it remains only to prove the
stated inequalities indeed hold.

By the triangle inequality, that fθ(y | u) ≤ (2π)−n/2, and the fact that fθ(u) does
not depend on β1, we have

‖∇β1fθ(y | u)fθ(u)‖ =

∥∥∥∥∥∥fθ(y | u)fθ(u)
∑
i,j

(yi,j,1 − ηi,j,1)xi,j

∥∥∥∥∥∥
≤ (2π)−n/2(2πθd)

−N exp

(
− 1

2θd
uTu

)
×
∑
i,j

(|yi,j,1|+ ‖β1‖‖xi,j‖+ |u(1)
i |+ |u

(2)
j |)‖xi,j‖

The inequality in the definition of K1 follows from Lemma 4 upon noting that θd is
bounded both away from zero and above on interior points, that ‖β1‖ is similarly
upper bounded on such points, and that ‖xi,j‖ ≤ 1 by assumption.

For the inequality in the definition of K2 we use that fθ(y | u) ≤ (2π)−n/2 and that
|yi,j,2 − 1/(1 + e−ηi,j,2)| ≤ 1. The latter assertion follows from that yi,j,2 ∈ {0, 1} and
that 1/(1 + et) ∈ (0, 1) for all t ∈ R. Thus, since fθ(u) does not depend on β2,

‖∇β2fθ(y | u)fθ(u)‖ =

∥∥∥∥∥∥fθ(y | u)fθ(u)
∑
i,j

(yi,j,2 − 1/(1 + e−ηi,j,2))xi,j

∥∥∥∥∥∥
≤ n(2π)−n/2(2πθd)

−N exp

(
− 1

2θd
uTu

)
‖xi,j‖.

Now the desired inequality follows from again noting the bounds from below and
above of θd and that ‖xi,j‖ ≤ 1.

The inequality in the definition of K3 follows similarly. First, fθ(y | u) does not
depend on θd so we get

|∇θdfθ(y | u)fθ(u)| =
∣∣∣∣fθ(y | u)fθ(u)

(
−N
θd

+
uTu

2θ2
d

)∣∣∣∣
≤ (2π)−n/2(2πθd)

−N exp

(
−u

Tu

2θd

)(
N

θd
+
uTu

2θ2
d

)
.

Now we are done upon again appealing to the lower and upper bounds of θd on
B̄ε(θ

0).
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We will need the following lemmas.

Lemma 9. Let X be a metric space and f : X × Rd → R, for some d > 0, be
continuous under the product metric. If X is compact, then h(y) = supx∈X f(x, y) is
continuous.

Proof. Fix some y and consider the compact set A = X × B̄1(y). Since A is
compact, f is uniformly continuous on A. Thus, for any ε > 0 we can pick δ such
that for every (x′, y′), (x′′, y′′) ∈ A, it holds that if d((x′, y′), (x′′, y′′)) < δ, then
|f(x′, y′)− f(d′′, y′′)| < ε. Thus, for any y′ ∈ Bδ(y) ⊆ B1(y), we have |h(y)− h(y′)| =
| supx∈X f(x, y) − supx∈X f(x, y′)| ≤ supx∈X |f(x, y) − f(x, y′)| = |f(x?(y, y′), y) −
f(x?(y, y′), y′)| < ε, where x?(y, y′) = arg maxx∈X |f(x, y) − f(x, y′)|. The arg max
exists by Lemma 4 since continuity of f implies continuity in x for every y.

Lemma 10. The K–L divergence from a Bernoulli distribution with parameter p
to one with parameter q is lower bounded by 2(p− q)2.

Proof. By direct computation, the K–L divergence is p log(p/q) + (1− p) log([1−
p]/[1− q]). Now using that t(1− t) ≤ 1/4 for all t ∈ R and assuming p > q we get

p log(p/q) + (1− p) log([1− p]/[1− q]) =

∫ p

q

(
p

t
− 1− p

1− t

)
dt

=

∫ p

q

(
p− t
t(1− t)

)
dt

≥ 4

∫ p

q
(p− t)dt

= 2(p− q)2

If instead q > p, then the same inequality results from letting 1 − p and 1 − q take
the roles of p and q. If p = q, then the inequality is an equality.

Let C(δ,G, ‖ · ‖) denote the δ-covering number of the set G under the distance
associated with the norm ‖ · ‖, that is, the least number of open balls of radius δ
needed to cover G.

Lemma 11 (Theorem 8.2 [5]). Let h1(ω, θ), h2(ω, θ), . . . , θ ∈ A ⊆ Θ, be inde-
pendent processes with integrable envelopes H1(ω), H2(ω), . . . , meaning |hi(ω, θ)| ≤
Hi(ω), for all i and θ ∈ A. Let H = (H1, . . . ,HN ) and

HN,ω = {[h1(ω, θ), . . . , hN (ω, θ)] ∈ RN : θ ∈ A}.

If for every ε > 0 there exists a K > 0 such that

1. N−1
∑N

i=1 E[HiI(Hi > K)] < ε for all N , and
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2. log C(ε‖H‖1,HN,ω, ‖ · ‖1) = oP(N) as N →∞,

then

sup
θ∈A

N−1

∣∣∣∣∣
N∑
i=1

hi(ω, θ)− E(hi(ω, θ))

∣∣∣∣∣ P→ 0.

Proof. Pollard [5] proves this result with packing numbers replaced by covering
numbers. Since [5, p. 10]

C(ε,HN,ω, ‖ · ‖1) ≤ D(ε,HN,ω, ‖ · ‖1) ≤ C(ε/2,HN,ω, ‖ · ‖1),

where D denotes packing numbers, there is nothing more to prove.

Proof Lemma 3.5 in Ekvall and Jones (2019). Let us first prove
that, given ε > 0, there exists a ζ > 0, and hence Ai = Ai(ε, ζ), i = 1, 2, such that
point 1 in the lemma holds. The definition of Ai(ε, ζ) is as in the main text. Let
c(t) = log(1+et) denote the cumulant function in the conditional distribution of Yi,i,2
given the random effects and define

pi(β2, θd) = E

[
c′
(
xTi,iβ2 +

√
θd/θ

0
d

(
U

(1)
i + U

(2)
j

))]
.

Recall, E denotes expectation with respect to the distributions indexed by θ0, so
pi(β2, θd) is the success probability of Yi,i,2 when β2 and θd are the true parameters.

Note that because the components inW (2) are independent, E[ΛN (θ;W (2))] is a sum
of N terms, each summand being the negative K–L divergence between two Bernoulli
variables with parameters pi(β2, θd) and pi(β

0
2 , θ

0
d). Thus, by Lemma 10, Jensen’s

inequality, the reverse triangle inequality, and the triangle inequality, respectively,

N−1E[ΛN (θ;W (2))]

≤ −2N−1
N∑
i=1

[pi(β2, θd)− pi(β0
2 , θ

0
d)]

2

≤ −2

[
N−1

N∑
i=1

|pi(β2, θd)− pi(β0
2 , θ

0
d)|

]2

≤ −2

[
N−1

N∑
i=1

∣∣|pi(β2, θd)− pi(β2, θ
0
d)| − |pi(β0

2 , θ
0
d)− pi(β2, θ

0
d)|
∣∣]2

≤ −2

[
N−1

N∑
i=1

|pi(β2, θd)− pi(β2, θ
0
d)| −N−1

N∑
i=1

|pi(β0
2 , θ

0
d)− pi(β2, θ

0
d)|

]2

.(1)

Let us work separately with the averages in the last line. We will show that the second
can be made arbitrarily small on A2 by selecting ζ small enough, and that the first is
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bounded away from zero on the same A2, leading to an asymptotic upper bound on
supθ∈A2

N−1E[ΛN (θ;W (2))] away from zero. We start with the first average.
Let H be a compact subset of R such that xTi,iβ2 ∈ H for all i and θ ∈ B̄ε(θ0). Such

H exists because the predictors are bounded and β2 is bounded on B̄ε(θ
0). Then,

defining p̃i(γ, θd) as pi(β2, θd) but with xTi,iβ2 replaced by γ, we get

sup
θ∈A2

|pi(β2, θd)− pi(β2, θ
0
d)| ≤ sup

θ∈A2

sup
γ∈H
|p̃i(γ, θd)− p̃i(γ, θ0

d)|.

Since the random variable in the expectation defining p̃i is bounded by 1 (it is the
mean of a Bernoulli random variable), p̃i is continuous by dominated convergence.
Thus, since H is compact, supγ∈H |p̃i(γ, θd)− p̃i(γ, θ0

d)| is continuous in θd by Lemma
9. That is, we can make supγ∈H |p̃i(γ, θd)−p̃i(γ, θ0

d)| arbitrarily small on A2 = A2(ζ, ε)
by picking ζ small enough, which is what we wanted to show. We next work with the
second average in (1).

By the mean value theorem, for some β̃2,i between β2 and β0
2 ,

|pi(β0
2 , θ

0
d)− pi(β2, θ

0
d)| = |E(c′′(xTi,iβ̃2,i + U

(2)
i + U

(2)
j ))xTi,i(β2 − β0

2)|.

Here, differentiation under the expectation is permissible since c′′ is the variance of
a Bernoulli random variable, hence bounded by 1/4, and |xTii(β2 − β0

2)| ≤ ‖xi,i‖‖β2 −
β0

2‖2 ≤ ε on B̄ε(θ
0). By the same bound on c′′ we get that E(c′′(γ + U

(1)
i + U

(2)
j )) is

continuous in γ. Thus, by Lemma 4, infγ∈H E(c′′(γ + U
(1)
i + U

(2)
j )) ≥ c1 > 0. That

c1 must be positive follows from that c′′ is strictly positive on all of R. We have thus
proven that |pi(β0

2 , θ
0
d)−pi(β2, θ

0
d)| ≥ c1|xTi (β2−β0

2)|, uniformly on B̄ε(θ
0). Using this

and that |xTi,i(β2−β0
2)| ≤ ‖xi,i‖‖β2−β0

2‖ ≤ ε ≤ 1 so that squaring it makes it smaller,

N−1
N∑
i=1

|pi(β0
2 , θ

0
d)− pi(β2, θ

0
d)| ≥ c1N

−1
N∑
i=1

|xTi,i(β2 − β0
2)|

≥ c1N
−1(β2 − β0

2)T

(
N∑
i=1

xi,ix
T
i,i

)
(β2 − β0

2)

≥ c1‖β2 − β0
2‖2N−1λmin

(
N∑
i=1

xi,ix
T
i,i

)

which lower limit as N →∞ is bounded below by some strictly positive constant, say

c2, since lim infN→∞N
−1λmin

(∑N
i=1 xi,ix

T
i,i

)
≥ c3 > 0, for some c3, and ‖β2 − β0

2‖ ≥
ε/2 > 0 on A2. To summarize, we may pick ζ so small that the second average in (1) is
less than c2/2, say, and hence get supθ∈A2

N−1E[ΛN (θ;W (2))] ≤ −2(c2 − c2/2)2 < 0,
for all but at most finitely many N . This proves point 1 as it pertains to A2.

Consider next

A1 = ∂Bε(θ
0) ∩

(
{θ : |θd − θ0

d| ≥ ζ} ∪ {θ : ‖β2 − β0
2‖ ≤ ε/2}

)
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and W (1). Similarly to for W (2), E[ΛN (θ;W (1))] can due to independence be written
as a sum of N terms in the form

E{log[fθ(Yi,i,1)/fθ0(Yi,i,1)]}

= −1

2

[
log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d + [xTi (β2 − β0

2)]2

1 + 2θd
− 1

]
,(2)

which is the negative K–L divergence between two univariate normal distributions.
Let us consider the possible values this can take for θ ∈ A1. If |θd − θ0

d| ≥ ζ, then (2)
is upper bounded by what is obtained when β1 = β0

1 . This in turn is a continuous
function in θd and hence attains its supremum on the compact set {θd : ζ ≤ |θd−θ0

d| ≤
ε}, and hence on A1. This supremum is strictly positive because the divergence can
be zero only if θd = θ0

d. If instead ‖β2 − β0
2‖ ≤ ε/2. Then either |θd − θ0

d| ≥ ε/4 or
‖β1 − β0

1‖ ≥ ε/4, for otherwise it cannot be that ‖θ − θ0‖ = ε. If |θd − θ0
d| ≥ ε/4 the

divergence in (2) has a lower bound away from zero by the same argument as for the
cases |θd − θ0

d| ≥ ζ. It remains to deal with the case ‖β1 − β0
1‖ ≥ ε/4.

Write [xTi,i(β
0
1 − β1)]2 = (β0

1 − β1)Txix
T
i (β0

1 − β1) to see that

−2N−1ΛN (θ;W (1))

is equal to

log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d +N−1

∑N
i=1(β0

1 − β1)Txix
T
i (β0

1 − β1)

1 + 2θd
− 1,

which has a lower limit that is greater than

log

(
1 + 2θd
1 + 2θ0

d

)
+

1 + 2θ0
d + c3(ε/4)2

1 + 2θd
− 1.

This expression is in turn maximized in θd at θd = θ0
d + c3(ε/16)2; this follows from

a straightforward optimization in 1 + 2θd. The corresponding maximum evaluates to
log(1 + 2θ0

d + c3(ε/4)2)− log(1 + 2θ0
d) > 0. This finishes the proof of point 1.

The proof of point 2 consists of checking the conditions of Lemma 11. We first work
with A1 and W (1). Let hi(ω, θ) = log[fθ(Yi,i,1(ω))/fθ0(Yi,i,1(ω))] be the log-likelihood
ratio for the ith observation in the first subcollection, i = 1, . . . , N . We equip HN,ω
with the L1 norm ‖ · ‖1, and Θ is equipped with the L2 norm as before. To facilitate
checking the two conditions we will first derive envelopes with the following properties:
sup−∞<i<∞ EHk

i < ∞ for every k ≥ 0, sup−∞<i<∞ P(Hi ≥ K) → 0 as K → 0, and
each hi(ω, θ) is Hi-Lipschitz in θ on B̄ε(θ

0), and hence on A1, for every ω. We start
with the Lipschitz property.

Let us use the slight abuse of notation that yi,i,1 = Yi,i,1(ω). Since the distribution of
W (1) does not depend on β2 we have ∇β2hi(ω, θ) = 0, and for some c1, c2, c3, c4, c5 > 0
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(depending on ε), and every θ ∈ B̄ε(θ0),

‖∇β1hi(ω, θ)‖ = ‖(yi,i,1 − xTi,iβ1)xi,i/(1 + 2θd)‖ ≤ c1|yi,i,1|+ c2

|∇θdhi(ω, θ)| =
1

2

∣∣∣∣ 1

1 + 2θd
− (yi,i,1 − xTi,iβ1)2/(1 + 2θd)

2

∣∣∣∣
≤ c3 + c4(|yi,i,1|+ c5)2.

The existence of these constants follow from Lemma 4. Let Hi be the sum of the
bounds, i.e.

Hi(ω) = c1|yi,i,1|+ c2 + c3 + c4(|yi,i,1|+ c5)2.

By the mean value theorem, |hi(ω, θ)− hi(θ′, ω)| = |(θ − θ′)T∇hi(ω, θ̃)| ≤ ‖θ − θ′‖Hi

for some θ̃ between θ and θ′. That is, hi is Hi-Lipschitz on B̄ε(θ
0). That Hi is an

envelope for hi follows from noting that hi(ω, θ
0) = 0 so by taking θ′ = θ0 in the

previous calculation, |hi(ω, θ)| ≤ Hi‖θ − θ0‖ ≤ Hi on B̄ε(θ
0). That supi E(Hk

i ) < ∞
for every k > 0 and supi P(Hi > K) → 0 as K → ∞ follow from that Yi,i,1 is
normally distributed with variance 1 + 2θ0

d, not depending on i, and mean satisfying
−‖β0

1‖ ≤ xTi,iβ0
1 ≤ ‖β0

1‖. We are now ready to check the conditions of Lemma 11.
By the Cauchy–Schwartz inequality and the properties just derived, we have for

every fixed N that

N−1
N∑
i=1

E[HiI(Hi > K)] ≤ sup
i

E[H2
i ] sup

i
P(Hi ≥ K)→ 0, K →∞,

which verifies the first condition.
For the second condition, note that the derived Lipschitz property gives, for arbi-

trary h = (h1(ω, θ), . . . , hN (ω, θ)) and h′ = (h1(ω, θ′), . . . , hN (ω, θ′)) in HN,ω:

‖h− h′‖1 =

N∑
i=1

|hi(ω, θ)− hi(ω, θ′)|

≤
N∑
i=1

‖θ − θ′‖Hi(ω)

= ‖θ − θ′‖‖H‖1.

Thus, if we cover ∂Bε(θ
0) with ε-balls with centers θj , j = 1, . . . ,M ,

then the corresponding L1 balls in RN of radius ε‖H‖1 with centers

hj = (h1(ω, θj), . . . , hN (ω, θj))

cover HN,ω. This is so because for every θ ∈ ∂Bε(θ
0) there is a θj such that ‖θ −

θj‖ ≤ ε, and hence by the Lipschitz property ‖h(ω, θ) − h(ω, θj)‖1 ≤ ‖H‖1ε. Thus,
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C(ε‖H‖1,HN,ω, ‖ · ‖1) ≤ C(ε, ∂Bε(θ
0), ‖ · ‖). Since C(ε, ∂Bε(θ

0), ‖ · ‖) is constant in
N , the second condition of Lemma 11 is verified for A1 and W (1).

The arguments for A2 and W (2) are similar, redefining hi(ω, θ) with Yi,i,1 replaced
by Y1,1,2, taking A2 in place of A1, and so on. We need only prove the existence of
envelopes H1, . . . ,HN with the desired properties. Using that |yi,j,2 − c′(ηi,2,1)]| ≤ 1
and that fθ(yi,i,2 | u)fθ(u)/fθ(yi,i,2) = fθ(u | yi,i,2) one gets,

‖∇β2hi(ω, θ)‖ =

∥∥∥∥∇β2 log

∫
fθ(yi,i,2 | u)fθ(u)du

∥∥∥∥
=

∥∥∥∥ 1

fθ(yi,i,2)

∫
fθ(yi,i,2 | u)fθ(u)[yi,i,2 − c′(ηi,j,2)]xi,idu

∥∥∥∥
≤ ‖xi,i‖ ≤ 1.

Using that U
(1)
i and U

(2)
j are the only random effects entering the linear predictor

ηi,j,2, and that fθ(yi,j,2 | u) ≤ 1,

|∇θdhi(ω, θ)|

=

∣∣∣∣∣ 1

fθ(yi,i,2)

∫
fθ(yi,i,2 | u)fθ(u

(1)
i , u

(2)
j )

(
(u

(1)
i )2 + (u

(2)
j )2

2θ2
d

− 1

θd

)
du

∣∣∣∣∣
≤ 1

2θdfθ(yi,i,2)

∫
fθ(u

(1)
i , u

(2)
j )

(
(u

(1)
i )2 + (u

(2)
j )2

θd

)
du+

1

θd

=
1

θdfθ(yi,j,2)
+

1

θd
.

By Lemma 4 the quantity in the last line attains its supremum on B̄ε(θ
0). This max-

imum is finite for both yi,i,2 = 1 and yi,i,2 = 0 since the marginal success probability
cannot be one or zero on interior points of Θ. Thus, on B̄ε(θ

0), ‖∇hi(ω, θ)‖ is bounded
by a constant, say H, the largest needed for the two cases yi,i,2 = 0 and yi,i,2 = 1. By
setting Hi = H, i = 1, . . . , N , we have envelopes with the right properties and this
completes the proof of point 2.

Finally, we prove point 3. Consider without loss of generality the first subset and
subcollection. For economical notation we write LN (θ) = LN (θ;W (1)) and ΛN (θ) =
ΛN (θ;W (1)). Point 1 gives that supθ∈A1

E[ΛN (θ)] < −3ε for some ε > 0 and all large
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enough N . Assuming that N is large enough that this holds, we get

P

(
eεN sup

θ∈A1

LN (θ) > e−εN
)

= P

(
N−1 sup

θ∈A1

ΛN (θ) > −2ε

)
≤ P

(
N−1 sup

θ∈A1

ΛN (θ) > ε+ sup
θ∈A1

E[ΛN (θ)]

)
= P

(
N−1 sup

θ∈A1

ΛN (θ)− sup
θ∈A1

E[ΛN (θ)] > ε

)
≤ P

(
N−1 sup

θ∈A1

|ΛN (θ)− E[ΛN (θ)]| > ε

)
,

which vanishes as N →∞ by point 2. Thus, since e−εN → 0,

eεN sup
θ∈A1

Ln(θ)
P→ 0.

Proof Lemma 3.6 in Ekvall and Jones (2019). We will find a Lipschitz con-
stant (random variable) with the desired properties by bounding ‖∇ log fθ(y)‖. We
first consider derivatives with respect to θd. Define

Jn(θ) = (2πθd)
Nfθ(y) =

∫
fθ(y | u) exp

(
−u

Tu

2θd

)
du

and

Kn(θ) =

∫
fθ(y | u) exp

(
−u

Tu

2θd

)
uTu

2θ2
d

du.

Then ∇θdJn(θ) = Kn(θ), and hence

∇θd log fθ(y) = ∇θd log[(2πθd)
−NJn(θ)] = −N

θd
+

Kn(θ)

Jn(θ)
.

We focus on the second term first. Let An = {u ∈ R2N : uTu ≤ an} for some constant
an (depending on the total sample size n). Let Kn

1 (θ) be the integral defining Kn(θ)
restricted to An, and let Kn

2 (θ) be the same integral but instead restricted to Acn so
that Kn(θ) = Kn

1 (θ) + Kn
2 (θ). Then, since the integrands are non-negative,

Kn
1 (θ)/Jn(θ) =

∫
An
fθ(y | u) exp

(
−uTu

2θd

)
uTu
2θ2d

du∫
fθ(y | u) exp

(
−uTu

2θd

)
du

≤ an
2θ2
d

and, hence,

|∇θd log fθ(y)| ≤ N

θd
+
an
2θ2
d

+
Kn

2 (θ)

Jn(θ)
.
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On Acn we have by definition that uTu ≥ uTu/2 + an/2. Thus, using that fθ(y | u) ≤
(2π)−n/2,

Kn
2 (θ) ≤

∫
Acn

fθ(y | u) exp

(
− 1

2θd
(uTu/2 + an/2)

)
uTu

2θ2
d

du

≤ 1

2θ2
d

e
− an

4θd

∫
fθ(y | u) exp

(
−u

Tu

4θd

)
uTu du

≤ 1

2θ2
d

e
− an

4θd (2π)−n/2
∫

exp

(
−u

Tu

4θd

)
uTu du

=
1

2θ2
d

e
− an

4θd (2π)−n/2(4πθd)
N

∫
(4πθd)

−N exp

(
−u

Tu

4θd

)
uTu du

=
4Nθd
2θ2
d

e
− an

4θd (2π)−n/2(4πθd)
N .(3)

Using Lemma 4, (3) can be upper bounded on B̄ε(θ
0) by hn1 = exp(c1an+c2n+c3N+

c4 logN + c5) for some constants c1, . . . , c5. It will be important later to note that the
constant c1 is negative in this expression.

We next derive a lower bound on Jn(θ). To that end, let Bn = {u ∈ R2N : |ui| ≤
1, i = 1, . . . , N}. Since the integrand in Jn(θ) is positive, we may lower bound it
by the same integral restricted to Bn. We then get, using that exp(−uTu/(2θd)) ≥
exp(−N/θd)) on Bn and that Lebesgue measure of Bn is 4N ,

Jn(θ) ≥ exp

(
−N
θd

)∫
Bn

fθ(y | u)du

≥ e−
N
θd (2π)−n/2(4)

× exp

−∑
i,j

y2
i,j,1/2 + |yi,j,1|(|xTi,jβ1|+ 2) + (|xTi,jβ1|+ 2)2


× exp

−∑
i,j

|yi,j,2|(|xTi,jβ2|+ 2) + log(1 + e|x
T
i,jβ2| + 2)

 4N .(5)

Here, the last inequality lower bounds all terms in the exponent by minus their
absolute values. Again using Lemma 4, that the predictors are bounded, and that
|yi,j,2| ≤ 1, we thus see that Jn(θ) can be lower bounded on B̄ε(θ

0) by hn2 (y) =
exp(c6N + c7n + c8

∑
i,j y

2
i,j,1 + c9

∑
i,j |yi,j,1| + c10), for some constants c6, . . . , c10.

Thus, by lower bounding θd > c−1
11 on B̄ε(θ

0) for some c11 > 0 we get

sup
θ∈B̄ε(θ0)

|∇θd log fθ(y)| ≤ c11N + c2
11an/2 +

hn1
hn2 (y)

.

Now, take an = n1+ε/2 for some ε > 0. Then the first two terms are O(an) as n→∞.
Moreover, since

∑
i,j EY

2
i,j,1 ≤ n(1 + 2θ0

d) + n‖β0
1‖ = O(n) by boundedness of the
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predictors, both sums in the exponent of hn1/h
n
2 (y) converges to zero in L1 if divided

by an, and hence also in probability. It follows from the continuous mapping theorem
that h1/h

n
2 (y) = OP(1) since, as remarked above, c1 < 0. We have thus proven that

supθ∈B̄ε(θ0) |∇θd log fθ(y)| = OP(an) = oP(n1+ε), for every ε > 0.
For β1 we get by using the triangle inequality, boundedness of the predictors, t(1−

t) ≤ 1/4, t ∈ R, and fθ(y | u)fθ(u)/fθ(y) = fθ(u | y),

‖∇β1 log fθ(y)‖ =

∥∥∥∥∥∥ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

[yi,j,1 − ηi,j,1]xi,jdu

∥∥∥∥∥∥
≤

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

|u(1)
i + u

(2)
j |du

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

fθ(y)

∫
fθ(y | u)fθ(u)

∑
i,j

[1/2 + (u
(1)
i )2 + (u

(2)
j )2]du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+ n/2 +
1

fθ(y)

∫
fθ(y | u)fθ(u)uTudu

=

∣∣∣∣∣∣
∑
i,j

(yi,j,1 − xTi,jβ1)

∣∣∣∣∣∣+ n/2 + 2θ2
d

Kn(θ)

Jn(θ)

Thus, by Lemma 4 and the same arguments as for ∇θd log fθ(y) we get that

sup
θ∈Bε(θ0)

‖∇β1 log fθ(Y )‖ = oP(n1+ε)

for any ε > 0.
Finally, by the triangle inequality and that |yi,j,2 − c′(ηi,j,2)| ≤ 1 for all i and j,

‖∇β2 log fθ(y)‖ =

∥∥∥∥∥∥ 1

fθ(y)

∫
fθ(y | u)

∑
i,j

[yi,j,2 − c′(ηi,j,2)]xi,jfθ(u)du

∥∥∥∥∥∥
≤ n
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