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A Logistic mixed model with asymmetric random effect

A.1 Definitions and important quantities

Let Yij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , r be conditionally independent given a vector of

random effects

W = [W1, . . . ,Wn]T ∈ Rn.

We consider a logistic generalized linear mixed model which assumes the conditional densities

are

fθ(yij | wi) = exp{yij(ψ + λwi)− c(ψ + λwi)},

where c(t) = log{1 + exp(t)} is the cumulant function for the Bernoulli distribution. To

illustrate how our method applies in setting where the critical point is not a boundary point,

suppose the elements of W are independent with exponential distributions with unit rate,

centered to have mean zero; that is,

Wi + 1 ∼ Exp(1), i = 1, . . . , n.

We denote the distribution of Wi by ν and note it has Lebesgue density f(wi) = exp{−(wi+1)}
on (−1,∞). The parameter is θ = (λ, ψ) and the parameter set is Θ = R2. A straightforward

calculation shows Eθ(Yij | W ) = c′(ψ + λWi) = 1/{1 + exp(−ψ − λWi)}, where the prime

denotes derivative.
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This model could be used, for example, for inference on the prevalence of some disease

using test results for nr patients, where patients with the same index i are from the same

test location. Then the random effect is used to model an asymmetric location effect which,

if λ 6= 0, implies observations from the same location are dependent. Location effects often

thought to be asymmetric include, for example, ones due to pollution. Continuing with that

example, the probability that a randomly selected patient has the disease is

Eθ(Yij) = Eθ{Eθ(Yij | W )} = Eθ{c′(ψ + λWi)} =

∫
1

1 + exp(−ψ − λwi)
ν(dwi).

Inference on this probability requires inference on both ψ and λ, which we will consider using

a (joint) confidence region for (λ, ψ).

Before presenting simulations and a synthetic data analysis, we state some important

quantities and briefly discuss how they can be computed in practice. Let yn = [y11, . . . , ynr]
T

be a vector of all observations and yi = [yi1, . . . , yir]
T. The log-likelihood is

`n(θ; yn) =
n∑
i=1

log

∫
fθ(yi | wi) ν(dwi),

where, due to conditional independence,

fθ(yi | wi) =
r∏
j=1

fθ(yij | wi).

Routine derivative calculations give the score function

sn(θ; yn) =
n∑
i=1

1

fθ(yi)

∫
fθ(yi | wi) {yi• − rc′(ψ + λwi)}

[
wi

1

]
ν(dwi)

where yi• =
∑r

j=1 yij and

fθ(yi) =

∫
f(yi | wi)ν(dwi) = Pθ(Yi = yi).

To evaluate these integrals in practice we use numerical quadrature rules for integrals with

respect to the exponential distribution, with 10 nodes using the statmod R package (Smyth,

1998).

Because the vectors Yi = [Yi1, . . . , Yir]
T are independent and identically distributed, the
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Fisher information is

In(θ) = nEθ
[
s1(θ;Y1)s1(θ;Y1)T

]
= n

∑
y∈{0,1}r

Pθ(Y1 = y)s1(θ; y)s1(θ; y)T,

where the sum is taken over all elements in the support of Y1.

Our theory implies every point where λ = 0 is a critical point. Indeed, as discussed in

Section 3 of the main text, at every such point e1 = [1, 0]T is an eigenvector of the Fisher

information with eigenvalue zero. However, unlike the examples in the main text, there are

no boundary points in this setting since Θ = R2.

To evaluate the proposed test-statistic at the critical points, define

s̄n(θ; yn) =

sn(θ; yn) λ 6= 0

[∇2
λ`n(θ; yn),∇ψ`n(θ; yn)]T λ = 0

.

As remarked in Section 3 of the main text, we have

Tn(θ; yn) = s̃n(θ; yn)TĨn(θ)−1s̃n(θ; yn) = s̄n(θ; yn)T covθ{s̄n(θ;Y n)}−1s̄n(θ; yn).

In the notation of the general theory in Section 2 of the main text, our choice of s̄n corresponds

to taking k1(θ) = k2(θ) = 1 at every θ such that λ 6= 0, and k1(θ) = 2 and k2(θ) = 1 at θ

where λ = 0, reflecting the fact that e1 is a critical vector.

To get an expression for s̄n that can be evaluated in practice, differentiate the first element

of sn(θ; yn) with respect to λ to get

∇2
λ`n(θ; yn) =

n∑
i=1

− 1

fθ(yi)2

[∫
fθ(yi | wi) {yi• − rc′(ψ + λwi)}wiν(dwi),

]2

+
n∑
i=1

1

fθ(yi)

∫
fθ(yi | wi)

[
{yi• − rc′(ψ + λwi)}2 − rc′′(ψ + λwi)

]
w2
i ν(dwi).

The first sum on the right-hand side is
∑n

i=1 s
i
λ(θ; yi)

2, which is zero at points where λ = 0.

Thus, when λ = 0,

∇2
λ`n(θ; yn) =

n∑
i=1

1

fθ(yi)

∫
fθ(yi | wi)

[
{yi• − rc′(ψ + λwi)}2 − rc′′(ψ + λwi)

]
w2
i ν(dwi),

which is straightforward to evaluate using numerical quadrature. Upon inspecting the
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integrands it is clear the computational cost of evaluating ∇2
λ`(θ; y

n) when λ = 0 is roughly

equivalent to that of evaluating ∇λ`n(θ; yn) when λ 6= 0. Similarly, the cost of evaluating

covθ{s̄(θ;Y n)} when λ = 0 is similar to the cost of evaluating In(θ) when λ 6= 0 since

covθ{s̄(θ;Y n)} = n covθ{s̄1(θ;Y1)} = n
∑

y∈{0,1}r
Pθ(Y1 = y)s̄1(θ; y)s̄1(θ; y)T.

A.2 Coverage simulations

We examine coverage probabilities of parameters in a neighborhood of a critical point.

Specifically, we generate data with ψ = 0.5 and

λ ∈ {0,±10−6,±0.01,±0.05,±0.1,±0.25,±0.4,±0.55,±0.7,±0.85,±1}.

To provide context we, in addition to our method, consider coverage of confidence regions

obtained by inverting likelihood-ratio and Wald test-statistics. Specifically, let

TLn (θ; yn) = 2{`n(θ̂; yn)− `n(θ; yn)},

where θ̂ ∈ arg maxθ∈Θ `n(θ; yn). Let also

TWn (θ; yn) = (θ̂ − θ)TIn(θ̂)(θ̂ − θ).

The confidence regions are Rn(α) = {θ ∈ R2 : Tn(θ; yn) ≤ q2,1−α}, RL
n(α) = {θ ∈ R2 :

TLn (θ; yn) ≤ q2,1−α}, and RW
n (α) = {θ ∈ R2 : TWn (θ; yn) ≤ q2,1−α}; where q2,1−α is the

(1 − α)th quantile of the chi-square distribution with 2 degrees of freedom. For our test-

statistic the reference distribution is motivated by the asymptotic theory in the main text.

For TLn and TWn it is motivated for interior points of the parameter set by classical asymptotic

theory (e.g. Ferguson, 1996). However, that theory typically does not apply when the Fisher

information is singular, so we expect potentially poor coverage near critical points.

We obtained θ̂ by applying the off-the-shelf optimizer optim in R to our implementation

of the log-likelihood. Some further remarks on computing and the associated times are in

Section B.

Figure A presents results for n ∈ {20, 80} and r = 5 based on 10,000 Monte Carlo

replications. Notably, coverage for the proposed method is near-nominal for all settings

while coverage for the other methods depends on how close to zero the true λ is and what

the sample size n is. In summary, the simulations indicate the asymptotic theory under a
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sequence of parameters gives useful guidance on coverage properties in finite samples.
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Figure A: Monte Carlo estimates of coverage probabilities of confidence regions from inverting
the proposed (solid), likelihood ratio (dashed), and Wald (dotted) test-statistics. The straight
horizontal line indicates the nominal 0.95 coverage probability and vertical bars denote ±2
times Monte Carlo standard errors.

A.3 Synthetic data analysis

To illustrate how the method can be applied in practice, we considered one synthetic dataset

like those in the simulations, with n = 80, r = 5, ψ = 0.5, and λ = −0.5. We created a

confidence region for (λ, ψ) by inverting the proposed test statistic (Figure B) numerically.

More specifically, we evaluated the test-statistic at a grid of 50 values each of λ and ψ,

meaning 2500 evaluations in total and included in the confidence region those θ for which

Tn(θ; yn) ≤ q2,1−α. To get an idea of where to center that grid we maximized an approximation

to the likelihood based on numerical quadrature with just one node. This gave fast and

reasonable guidance on which values to consider for the inversion. We got the maximizing

point (λ̃, ψ̃) = (−0.044, 0.55) and, based on this, centered the grid at (0, 0.5). Similarly, to

get a rough idea for how large to make the grid, one may first compute an inexact Wald-type

confidence region based on a fast approximation of the likelihood or evaluate componentwise

test-statistics at a few values to get a rough idea of ranges of parameter values to consider.

Typically, a few evaluations per parameter is sufficient and, hence, the computational effort

of this step is negligible in comparison to evluating the test-statistic on the resulting grid.

In many settings, subject-specific knowledge may also inform which parameter values to

consider.

Figure B shows the confidence region includes both positive and negative values of λ.
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However, the region is not symmetric around the line λ = 0, which it would be if the random

effect were symmetrically distributed around zero.

To make inferences about Eθ(Yij) = Pθ(Yij = 1), which is the same for all i and j, we

numerically calculated the image of the 95% region in Figure B under the mapping θ 7→ Eθ(Yij).
Specifically, we calculated Eθ(Yij) for all θ in our grid which satisfied Tn(θ; yn) ≤ q2,0.95 and

then computed the range of those numbers. This gave the interval (0.58, 0.69), which includes

the true value 0.62 =
∫
c′(0.5− 0.5wi)ν(dwi).
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Figure B: Joint 80–95 % confidence regions for (λ, ψ), based on the proposed test-statistic
and the chi-square distribution with 2 degrees of freedom.

B Computing times

Tables A and C show average computing times for the proposed test-statistic and the likelihood

ratio test statistic, for the linear mixed model simulations in the main text and the logistic

mixed model simulations presented earlier, respectively. We do not report times for the Wald

statistic because they were essentially the same as for the likelihood-ratio statistic; for either,

most of the time is spent calculating the maximum likelihood estimates. For brevity we report

times for a subset of the considered parameter values; times were similar for the parameter

values not reported. All times are on a MacBook Pro with 2.6 GHz 6-core Intel i7 CPU.

In all of our simulation settings, the proposed test-statistic was on average substantially

faster to compute than the other two. However, we caution the reader that it is not possible

to say which test-statistic is faster to compute in general. In some settings computing the

Fisher information is computationally cheaper than obtaining maximum likelihood estimates,

but it is easy to come up with a setting where that is not the case. Thus, in some settings

there will be a trade-off between computing costs and the properties of the test statistics.
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We expect the particular implementation one is using to have a substantial effect on

computing times. For example, for the model in Section A we used a naive implementation of

numerical integration in R to evaluate our test-statistic and we used the off-the-shelf optimizer

optim to get the maximum likelihood estimates. We considered both derivative free and

quasi-Newton optimization (L-BFGS-B) and times were similar. Optimized implementations

in a compiled language (e.g. Fortran, C, or C++) would likely speed up all methods by

orders of magnitude.

Computing when there are many, potentially crossed, random effects in a non-linear

model poses additional challenges. Indeed, even evaluating the likelihood in such settings is

complicated. Some Monte Carlo-based methods have been proposed (Knudson et al., 2021)

and these could potentially be adapted to our method, possibly in conjunction with existing

methods for evaluating the Fisher information matrix using Monte Carlo (Riviere et al., 2016).

In practice it is more common, however, not to evaluate the likelihood at all and instead use

a fast but potentially inaccurate approximation. For example, when there are more than one

random effect the lme4 package bases inference on a Laplace approximation of the likelihood,

which is equivalent to adaptive Gaussian quadrature with one node. Similar approaches are

taken in other common software and could be implemented for the integrals required by our

method.

Inverting the proposed test-statistic or the likelihood ratio test-statistic in practice can

require evaluating them many times. For example, we evaluated the test statistic 2500 times

in our data example in Section A, and this took about 39 seconds using a single CPU core.

In higher dimensions computing times will increase substantially. On the other hand, the

time required for numerical inversion can be decreased if several cores are available since the

test-statistics can be evaluated at different points in parallel.

(a) n = 20

λ
0 0.01 0.5

our 1.65 1.50 1.50
lrt 4.28 3.82 4.94

(b) n = 80

λ
0 0.01 0.5

our 98.01 82.94 78.63
lrt 299.72 264.50 232.05

Table A: Average computing times (100th of s.) for linear mixed model over 10,000 Monte
Carlo replications.

7



(a) n = 20

λ
0 0.01 0.55

our 1.08 0.91 0.93
lrt 9.52 8.63 9.51

(b) n = 80

λ
0 0.01 0.55

our 2.90 2.47 2.50
lrt 33.25 29.17 31.18

Table C: Average computing times (100th of s.) for logistic mixed model over 10,000 Monte
Carlo replications.

C Details for Example 1

Recall, the Yi = [Y1, . . . , Yr]
T, i = 1, . . . , n, are independent and multivariate normally

distributed with mean 0 and common covariance matrix Σ(θ) = θ21r1
T
r + Ir. Thus, the

log-likelihood is for one observation is

log fθ(yi) = −1

2
log |Σ(θ)| − 1

2
yTi Σ(θ)−1yi.

Since 1r1
T
r has eigenvalues r and 0, Σ(θ) has eigenvalues 1 + rθ2 and 1, the latter with

multiplicity r − 1. Thus, |Σ(θ)| = (1 + rθ2)1r−1 = 1 + rθ2. Applying the Sherman–

Morrison formula to Σ(θ)−1 gives(Ir + θ21r1
T
r )−1 = Ir − θ21r1

T
r (1 + rθ2)−1, and hence

2 log fθ(yi) = − log(1 + rθ2) − yTi yi + (yTi 1r)
2θ2(1 + rθ2)−1. Differentiating log fθ(yi) with

respect to θ gives si(θ; yi) = −rθ(1 + rθ2)−1 + θ(yTi 1r)
2(1 + rθ2)−2. Differentiating again

we get hi(θ; yi) = −(r − r2θ2){(1 + rθ2)2}−1 + (yTi 1r)
2(1 − 3rθ2)(1 + rθ2)−3. Thus, using

that Eθ{(Y T
i 1r)

2} = varθ(Y
T
i 1r) = 1T

r Σ(θ)1r = 1T
r 1r(1 + rθ2) = r(1 + rθ2) we find I i(θ) =

−Eθ[hi(θ;Yi)] = (r − r2θ2)(1 + rθ2)−2 − r(1 + rθ2)(1− 3rθ2)(1 + rθ2)−3 = 2r2θ2(1 + rθ2)−2.

Consequently, for θ > 0,

Tn(θ; yn)1/2 = n−1/2

n∑
i=1

si(θ; yi)√
I1(θ)

= (2n)−1/2

n∑
i=1

{
−1 +

(yTi 1r)
2

r(1 + rθ2)

}
.

Define the score test-statistic standardized by observed information

TOn (θ; yn) = sn(θ; yn)T
{
−∇2`n(θ; yn)

}−1
sn(θ; yn).

Theorem C.1. In Example 1, with known ψ = 0 and r = 1 it holds as n → ∞, with
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Z ∼ N (0, 1),

TOn (θn;Y n
n ) 


Z2 if n1/4|θn| → ∞

2a2Z2

2a2−
√

2Z
if θn = an−1/4, a ∈ R

0 if θn = o(n−1/4)

,

where Y n
n = (Yn1, . . . , Ynn) has the distribution indexed by θn.

Proof. Recall si(θ; yi) = θ{−1 + y2
i /(1 + θ2)}/(1 + θ2). Some algebra gives that ∇2`i(θ; yi) =

(θ4 − 3θ2y2
i + y2

i − 1)/(1 + θ2)3 and hence

TOn (θ; yn) = θ2(1 + θ2)
[
∑n

i=1{yi/(1 + θ2)− 1}]2∑n
j=1{1− y2

i + 3θ2y2
i − θ4}

Let xn =
∑n

i=1{y2
i /(1 + θ2)− 1}, or

∑n
i=1 y

2
i = (1 + θ2)(xn + n), to get

TOn (θ; yn) = θ2(1 + θ2)
x2
n

n(1 + θ2)(1− θ2)− (1− 3θ2)(xn + n)(1 + θ2)

=
x2
n/n

2− (1− 3θ2)(θ2n)−1xn

Observe that Xn ∼ (χ2
n−n) regardless of θ, where Xn is defined as xn but with Yi in place of

yi. Thus, n−1/2Xn  
√

2Z by the central limit theorem. Thus, if θ2
nn = a2

√
n, or θn = an−1/4,

then TOn (θn) 2a2Z2/(2a2 −
√

2Z) by Slutsky and mapping theorems. The other cases now

follow by routine arguments.

D Additional results

Lemma D.1. If Assumptions 1–2 and 4–5 hold; then for any n = 1, 2, . . . and {θm} ∈ Θ

tending to some θ ∈ Θ, with Y n
m and Y n having the distributions indexed by θm and θ,

respectively, as m→∞ with n fixed:

Tn(θm;Y n
m) Tn(θ;Y n).

Proof. Since f iθm → f iθ for every i pointwise by Assumption 2, Y n
n  Y n (see Proof of

Theorem 2.1). Thus, by Slutsky’s theorem, (θm, Y
n
m) (θ, Y n). The result now follows from

the continuous mapping theorem and Theorem 2.1.

Lemma D.2. If Assumption 2 holds, then Eθ{sn(θ;Y n)} = 0 for all θ ∈ Θ.
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Proof. Let γn denote the product measure ⊗ni=1γi. Pick a sequence tm ↓ 0 as m→∞ and

use the mean value theorem, applicable by Assumption 2, to write for some t̃m ∈ [0, tm],

0 = t−1
m

∫ {
fθ+tmej(y

n)− fθ(ym)
}
γn(dyn)

=

∫
∇jfθ+t̃mej(y

n)γn(dyn)

=

∫
snj(θ + t̃mej; y

n)fθ+t̃mej(y
n)γn(dyn)

= E{snj(θm, Y n
m)},

where θm = θ + t̃mej → θ as m → ∞ and Y n
m has the distribution indexed by θm. By

Slutsky’s theorem, (θm, Y
n
m) (θ, Y n), where Y n has the distribution indexed by θ. Thus,

by Assumption 2 and the continuous mapping theorem, snj(θm, Y
n
m) snj(θ, Y

n). Moreover,

by Assumption 2 there exists an M < ∞ such that E{snj(θm;Y n
m)2} ≤ M for all large

enough m. Thus, the sequence {snj(θm, Y n
m)} is uniformly integrable and, consequently,

0 = E{snj(θm;Y n
m)} → E{snj(θ;Y n)}, which completes the proof.

E Proofs of results in main text

Proof of Lemma 2.2. The assumptions of the lemma imply Tn(·; ·) is continuous on {θ :

I(θ) > 0} × Yn. They also say we may, for any critical θ and yn ∈ Yn, unambiguously define

Tn(θ; yn) = limm→∞ Tn(θm; yn), where {θm} is any sequence of non-critical points tending to

θ; Assumption 5 says at least one such sequence exists. To verify this extension is continuous

on Θ× Yn, let instead {θm} ∈ Θ be an arbitrary sequence, possibly including critical points,

tending to θ. Let also {ynm} ∈ Yn be an arbitrary sequence tending to yn. By the assumptions

of the lemma, we can find, for every fixed m, a non-critical θ̃m such that

|Tn(θm; ynm)− Tn(θ̃m; ynm)| ≤ 1/m and ‖θm − θ̃m‖ ≤ 1/m.

Thus, by the triangle inequality,

|Tn(θm; ynm)− Tn(θ; yn)| ≤ 1/m+ |Tn(θ̃m; ynm)− Tn(θ; yn)|,

which tends to zero by the assumptions of the lemma since {θ̃m} is a sequence of non-critical

points tending to θ.
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Proof of Lemma 2.5. We first prove Equation (5) implies Equation (4) in the main text.

For contradiction, suppose (5) holds and that there exist a compact C ⊆ Θ and an ε > 0

such that, for infinitely many n, supθ∈C |Pθ {θ ∈ Rn(α)} − (1 − α)| > ε. Let N be the set

of such n and pick, for every n ∈ N , a θn ∈ C such that |Pθn {θn ∈ Rn(α)} − (1 − α)| > ε

Because C is compact, it is bounded and hence {θn : n ∈ N} is a bounded sequence. Thus,

it contains a convergent subsequence. But by (5), along this subsequence, Tn(θn;Y n
n ) χ2

d;

in particular, since χ2
d has a continuous cumulative distribution function, Pθn{θn ∈ Rn(α)} =

P{Tn(θn;Y n
n ) ≤ qd,1−α} → 1− α along the subsequence, which is the desired contradiction.

To prove Equation (4) implies Equation (5) in the main text, note that if θn → θ, then

for all large enough n, θn is in a compact neighborhood C of θ. Thus, for those n and any

α ∈ (0, 1), |P{Tn(θn;Y n
n ) ≤ qd,1−α}− (1−α)| = |Pθn{θn ∈ Rn(α)}− (1−α)| ≤ supθ∈C Pθ{θ ∈

Rn(α)− (1− α)}|, which tends to zero by (4). Thus, since the range of α 7→ qd,1−α is (0,∞),

the cumulative distribution function of Tn(θn;Y n
n ) tends to that of χ2

d at every point in R,

which completes the proof.

Proof of Lemma 3.7. Differentiating log fθ(yi) with respect to ψ gives siψ(θ; yi, Xi) = XT
i Σ−1

i (yi−
Xiψ). Differentiating this with respect to λ and taking expectations shows I i(θ) is block-

diagonal. The trailing d2 × d2 block is I iψ(θ) = covθ{siψ(θ;Yi, Xi)} = E(XT
i Σ−1

i Xi), which is

positive definite for all θ since e(Σ) ≥ σ2 > 0 and e{E(XT
i Xi)} > 0 by assumption; the result

follows.

Proof of Lemma 3.8. For j = 1, . . . , d1, let

ζ ij(θ; yi, Xi) = tr
{

Σ−1
i H i

j − Σ−1
i (yi −Xiψ)(yi −Xiψ)TΣ−1

i H i
j

}
,

which are the first d1 elements of ξi(θ; yi, Xi) defined in the proof of Theorem 3.9. In particular,

for λj > 0, ζ ij(θ; yi, Xi) = sij(θ; yi, Xi)/λj, and hence the claim to be proved is equivalent to,

for any v ∈ Rd1 ,

ē(Σi)
−2 e(ZT

i Zi)
2 max

j
(vj)

2 ≤ 1

2
varθ{vTζ i(θ;Yi, Xi) | Xi} ≤ ri e(Σi)

−2 ē(ZT
i Zi)

2 max
j

(vj)
2.

With Gi =
∑d1

j=1 vjH
i
j ∈ Rri×ri , we have

vTζ i(θ;Yi, Xi) = tr
[{

Σ−1
i − Σ−1

i (Yi −Xiψ)(Yi −Xiψ)TΣ−1
i

}
Gi

]
.

Thus, applying the well-known expression for the variance of a quadratic form in multivariate
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normal vectors (Seber and Lee, 2003, Theorem 1.6),

varθ
{
vTζ i(θ;Yi, Xi) | Xi

}
= varθ

[
tr
{

Σ−1
i (Yi −Xiψ)(Yi −Xiψ)TΣ−1

i Gi

}
| Xi

]
= varθ

[
(Yi −Xiψ)TΣ−1

i GiΣ
−1
i (Yi −Xiψ) | Xi

]
= 2 tr[(Σ

−1/2
i GiΣ

−1/2
i )2].

We start with the lower bound. Observe that since Σ
−1/2
i GiΣ

−1/2
i is symmetric, its eigenvalues

are real, and hence the eigenvalues of its square are non-negative as the squares of real numbers.

Thus, the trace upper bounds the maximum eigenvalue, and hence varθ
{
vTζ i(θ;Yi, Xi) | Xi

}
is lower bounded by

2‖(Σ−1/2
i GiΣ

−1/2
i )2‖ ≥ 2 e(Σ−1

i )‖Σ−1/2
i G2

iΣ
−1/2
i ‖ ≥ 2 e(Σ−1

i )2 ē(G2
i ).

Now write

Gi =

d1∑
j=1

∑
k∈[j]

vjZ
k
i (Zk

i )T =

q∑
k=1

vj(k)Z
k
i (Zk

i )T = ZiṼ Z
T
i ,

where vj(k) is the vj scaling Zk
i (Zk

i )T in the double sum and Ṽ is diagonal with the elements of

v on the diagonal, ordered so that the last equality holds. Then ‖G2
i ‖ = ‖ZiṼ ZT

i ZiṼ Z
T
i ‖ ≥

e(ZT
i Zi)‖ZiṼ 2ZT

i ‖. The last norm is ‖ZiṼ 2ZT
i ‖ = ē(ZiṼ

2ZT
i ) = max‖b‖=1 b

TZiṼ
2ZT

i b which

by considering b = Z l
i/‖Z l

i‖ is lower bounded by, for every l = 1, . . . , q,(
Z l
i

‖Z l
i‖

)T q∑
k=1

v2
j(k)Z

k
i (Zk

i )T
(

Z l
i

‖Z l
i‖

)
≥ vj(l)‖Z l

i‖2 ≥ v2
j(l) min

k
‖Zk

i ‖2.

Thus, because it holds for every l it holds for l ∈ arg maxk v
2
j(k), and the proof of the lower

bound is completed by observing ‖Zk
i ‖2 = eTkZ

T
i Ziek ≥ e(ZT

i Zi). For the upper bound, note

2 tr[(Σ
−1/2
i GiΣ

−1/2
i )2] ≤ 2ri‖Σ−1

i ‖2‖Gi‖2 ≤ 2ri‖Σ−1
i ‖2‖Zi‖4‖Ṽ ‖2,

which is equal to the stated upper bound and hence the proof is completed.

Proof of Theorem 3.10. The claim about Rλ
n(α) is almost immediate from Theorem 3.9 and

the fact that In(θ) is block diagonal so we omit the proof. To prove the second claim, observe
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that T λn (λ;ψ, Y n, Xn) is equal to{
n−1/2

n∑
i=1

ζ i(θ;Yi, Xi)
T

}
covθ

{
ζ1(θ;Y1, X1)

}−1

{
n−1/2

n∑
i=1

ζ i(θ;Yi, Xi)

}
,

where ζ i is defined in the proof of Lemma 3.8. Let C(θ) be the covariance matrix in the

middle term. We showed in the proof of Lemma 3.8 that C(θ) is positive definite at any θ; in

particular, vTC(θ)v ≥ 2 maxj v
2
j ē(Σ1)

−2 e(ZT
1 Z1)

2. Moreover, it is straightforward to show

C is continuous using uniform integrability of {ζ1(θm;Ym1, Xm1)ζ
1(θm;Ym1, Xm1)

T}, where

(Ym1, Xm1) has the distribution indexed by a θm tending to some θ; the arguments are very

similar to those in the proof of Theorem 2.1 and hence omitted. Thus, it suffices (Billingsley,

1999, Theorems 2.7 and 3.1) to show∥∥∥∥∥n−1/2

n∑
i=1

ζ i(λn;ψn, Yni, Xni)− n−1/2

n∑
i=1

ζ i(λn; ψ̂n, Yni, Xni)

∥∥∥∥∥ = oP(1),

where (Yni, Xni) has the distribution indexed by θn. We show the equivalent result that every

element of the vector in the norm is oP(1). The jth element is

n−1/2

n∑
i=1

{
(Yni −Xniψn)TΩnj(Yni −Xniψn)− (Yni −Xniψ̂n)TΩnj(Yni −Xniψ̂n)

}
,

where Ωnj = Σ−1
n HjΣ

−1
n . Let εni = Yni −Xniψn ∼ N (0,Σn) to get that the last display is

equal to

n−1/2

n∑
i=1

[
εTniΩnjεni − {εni +Xni(ψn − ψ̂n)}TΩnj{εni +Xni(ψn − ψ̂n)}

]
,

which in turn is equal to

−n−1/22(ψn − ψ̂n)T
n∑
i=1

XT
niΩnjεni − n−1/2(ψn − ψ̂n)T

(
n∑
i=1

XT
niΩnjXni

)
(ψn − ψ̂n).

Thus, since ‖ψn − ψ̂n‖ = OP(1/
√
n) it suffices to show that∥∥∥∥∥n−1

n∑
i=1

XT
niΩnjεni

∥∥∥∥∥ = oP(1) and

∥∥∥∥∥n−1

n∑
i=1

XT
niΩnjXni

∥∥∥∥∥ = OP(1).

13



For the former we show the elements are oP(1) and for the latter it suffices, since the matrix

in the norm is positive semi-definite, to show the diagonal elements are OP(1). First, then,

condition on {X1, . . . , Xn}, apply Chebyshev’s inequality, and take expectations to get, for

any s ≥ 0 and standard basis vector el,

P

{∣∣∣∣∣eTl n−1

n∑
i=1

XT
niΩnjεni

∣∣∣∣∣ ≥ s

}
≤ 1

s2n2
E

(
n∑
i=1

eTl X
T
niΩnjΣnΩnjXniel

)
≤ 1

s2n
‖Hj‖2σ−6E(‖X1‖2),

which tends to zero since ‖Hj‖ ≤ ‖ZTZ‖ and E(‖X1‖2) are bounded by assumption. The

second holds since, for any standard basis vector el, e
T
l X

T
niΩnjXniel ≤ ‖Ωnj‖eTl XT

niXniel,

‖Ωnj‖ ≤ ‖Hj‖‖Σ−1‖ ≤ ‖Hj‖σ−4, and n−1
∑n

i=1 e
T
l X

T
niXniel → eTl E(XT

1 X1)el <∞ by the law

of large numbers.

F Additional simulations

Figure C summarizes the results of a Monte Carlo experiment with 10,000 replications and

compares coverage probabilities for our method with ψ known and ψ estimated, i.e. a

nuisance parameter. Other than that, the settings are like those for producing Figure 2 in the

main text. Notably, coverage is slightly higher when estimating ψ. Nevertheless, coverage is

near-nominal in all settings and the differences between known and estimated ψ are especially

small for larger n.

Figure D here is also similar to Figure 2 in the main text, but here σ is treated as

unknown. In the simulations, the unknown σ = 1 and coverage probabilities are for a range

of (λ1, λ2, σ) = (λ1, λ2, 1) where the values of λ1 = λ2 are on the horizontal axis in Figure D.

All confidence regions use the chi-square distribution with 3 degrees of freedom as reference.
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Figure C: Monte Carlo estimates of coverage probabilities of confidence regions from inverting
the modified score with ψ estimated (solid) or known (dashed). The straight horizontal line
indicates the nominal 0.95 coverage probability and vertical bars denote ±2 times Monte
Carlo standard errors.
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Figure D: Monte Carlo estimates of coverage probabilities of confidence regions from inverting
the modified score (solid), likelihood ratio (dashed), and Wald (dotted) test-statistics. The
straight horizontal line indicates the nominal 0.95 coverage probability and vertical bars
denote ±2 times Monte Carlo standard errors.
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