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We propose confidence regions with asymptotically correct uniform cov-
erage probability of parameters whose Fisher information matrix can be sin-
gular at important points of the parameter set. Our work is motivated by the
need for reliable inference on scale parameters close or equal to zero in mixed
models, which is obtained as a special case. The confidence regions are con-
structed by inverting a continuous extension of the score test statistic stan-
dardized by expected information, which we show exists at points of singular
information under regularity conditions. Similar results have previously only
been obtained for scalar parameters, under conditions stronger than ours, and
applications to mixed models have not been considered. In simulations our
confidence regions have near-nominal coverage with as few as n = 20 obser-
vations, regardless of how close to the boundary the true parameter is. It is a
corollary of our main results that the proposed test statistic has an asymptotic
chi-square distribution with degrees of freedom equal to the number of tested
parameters, even if they are on the boundary of the parameter set.

1. Introduction. In mixed models, the importance of a random effect is often assessed
by inference on a variance or scale parameter. A parameter near zero typically indicates a
weak effect and many tests for whether a variance is equal to zero have been proposed (Stram
and Lee (1994, 1995), Baey, Cournède and Kuhn (2019), Chen, Xiao and Staicu (2019),
Crainiceanu and Ruppert (2004), Drikvandi et al. (2013), Fitzmaurice, Lipsitz and Ibrahim
(2007), Giampaoli and Singer (2009), Greven et al. (2008), Hall and Præstgaard (2001), Lin
(1997), Qu, Guennel and Marshall (2013), Saville and Herring (2009), Sinha (2009), Stern
and Welsh (2000), Verbeke and Molenberghs (2003), Wiencierz, Greven and Küchenhoff
(2011), Wood (2013), Zhu and Zhang (2006)). In addition to being of practical interest, this
case is of theoretical interest because the parameter is a boundary point of the parameter set
and, consequently, asymptotic distributions of common test statistics are nonstandard. For ex-
ample, the asymptotic distribution of the likelihood ratio test statistic for a variance equal to
zero is a nontrivial mixture of chi-square distributions (Geyer (1994), Self and Liang (1987),
Stram and Lee (1994)), whereas for a strictly positive variance it is a chi-square distribution
with one degree of freedom. More generally, the asymptotic distributions of common test
statistics under a sequence of parameters tending to a boundary point as the sample size in-
creases, can be different depending on the rate of that convergence (Bottai (2003), Rotnitzky
et al. (2000)). While this need not be an issue when testing a point null hypothesis, it com-
plicates more ambitious inference: coverage probabilities of confidence regions obtained by
inverting such test statistics often depend substantially on how close to the boundary the true
parameter is, leading to unreliable inference. The coverage of boundary points is addressed
by existing methods, but the coverage of points near the boundary is not. We address both
using a connection between boundary points and points where the Fisher information matrix
is singular, which we call critical points. More specifically, we show many boundary points
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of interest are also critical points and use this to construct confidence regions that (i) have
asymptotically correct uniform coverage probability, (ii) have empirical coverage close to
nominal in simulations, and (iii) are straightforward to implement for many mixed models,
including the ubiquitous linear mixed model. We know of no other confidence regions with
properties (i) and (ii) in the settings we consider. Because not all critical points are boundary
points, the proposed regions are useful in many settings where methods for inference on the
boundary do not apply.

To be more precise about the connections between boundary points, critical points and
mixed models, suppose a parameter θ ∈ R scales a random effect with mean zero and unit
variance in a mixed model, implying θ2 is a variance. For example, θ can be the coefficient
of a random effect in a generalized linear mixed model. If the random effect has a distribution
asymmetric around zero, inference on both the sign and magnitude of θ may be possible, in
which case θ = 0 is not a boundary point. In other settings, the sign is unidentifiable and
inference on θ ≥ 0 and θ2 essentially equivalent; θ = 0 is a boundary point. Either way, we
will show that in quite general mixed models θ = 0 is a critical point. More generally, when
θ is a vector of parameters whose j th element θj is a scale parameter, θ is often a critical
point if θj = 0. Whether in a mixed model or not, inference near critical points is known to be
difficult: the likelihood ratio test statistic and the maximum likelihood estimator behave quite
differently than under classical conditions (Rotnitzky et al. (2000)) and confidence regions
obtained by inverting common test statistics such as the Wald, likelihood ratio and score stan-
dardized by observed information have incorrect coverage probabilities (Bottai (2003)). By
contrast, we show that, under regularity conditions, (i) the score test statistic standardized by
expected Fisher information has a continuous extension at critical points and, when inverted,
(ii) that test statistic gives a confidence region with asymptotically correct uniform coverage
probability on compact sets. That is, the confidence region Rn(α) based on n observations
with nominal level (1 − α) ∈ (0,1) satisfies, for any compact subset C of the parameter set,

lim
n→∞ inf

θ∈C
Pθ

{
θ ∈ Rn(α)

} = 1 − α,(1)

where the subscript θ on P indicates the data on which Rn is based have the distribution
indexed by θ . Importantly, C can include neighborhoods of boundary and critical points. It is
an immediate corollary that the test rejecting a null hypothesis θ = θ0 when θ0 /∈ Rn(α) has
asymptotic size α for any θ0. These results apply to but are not restricted to mixed models.
Moreover, in contrast to many methods for testing variance parameters in mixed models,
ours in general does not require the implementation of simulation algorithms or computing
the maximum likelihood estimator, which can be complicated in nonlinear mixed models.

The connection between singular information and boundary settings has been noticed pre-
viously (Chesher (1984), Cox and Hinkley (2000), Lee and Chesher (1986)), but results simi-
lar to ours have only been obtained for settings with a single scalar parameter (Bottai (2003)).
We recover those results as special cases, and under weaker conditions. Asymptotic properties
of maximum likelihood estimators and likelihood ratio test statistics have been established
for the special case where the rank of the Fisher information matrix is one less than full
(Rotnitzky et al. (2000)), but confidence regions were not considered. Notably, our theory
does not require the Fisher information to have a particular rank and, indeed, we will see that
in mixed models the rank is often full minus the number of scale parameters equal to zero.

We end this section with a simple example that illustrates how critical points often appear
in mixed models. After the example, we give additional background and develop theory in
Section 2. In Section 3, we discuss the application to mixed models and verify the condi-
tions of the theory from Section 2 in two such models. Section 4 presents simulation results,
Section 5 contains a data example and Section 6 concludes.
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FIG. 1. Log-likelihoods for two independent samples of n = 100 independent observations each, generated with
θ = 1/

√
10 and r = 1.

EXAMPLE 1. Suppose, for i = 1, . . . , n and j = 1, . . . , r ,

Yi,j = θWi + Ei,j ,

where θ ∈ [0,∞) and all Wi and Ei,j are independent standard normal random variables.
For example, r can be the number of observations in a cluster, n the number of clusters and
the random effect Wi used to model heterogeneity between clusters or dependence between
observations in the same cluster. The Yi = [Yi1, . . . , Yir ]ᵀ, i = 1, . . . , n, are independent and
multivariate normally distributed with mean zero and common covariance matrix �(θ) =
θ21r1ᵀ

r + Ir , where 1r is an r-vector of ones and Ir the r × r identity matrix. With some
algebra (Supplementary Material, Ekvall and Bottai (2022)), one can show the log-likelihood
for one observation yi ∈ R

r is

logfθ (yi) = −1

2
log

(
1 + θ2r

) − 1

2

{
y

ᵀ
i yi − (

y
ᵀ
i 1r

)2
θ2/

(
1 + rθ2)}

.

Differentiating with respect to θ gives the score for one observation:

s(θ;yi) = − rθ

1 + rθ2 + (
y

ᵀ
i 1r

)2 θ

(1 + rθ2)2 .

At θ = 0, this score is zero for any yi ∈ R
r , and hence the Fisher information is zero; that is,

θ = 0 is a critical point. There are no other critical points because the second term of s(θ;Yi),
Yi ∼ fθ , has positive variance when θ �= 0.

Figure 1 shows two (pseudo) randomly generated realizations of the log-likelihood in this
example. For one data set, the critical point is a global maximizer and for the other a local
minimizer. One can show that if the true θ is small, both types of outcomes have probability
approximately 1/2. In particular, the score always vanishes at θ = 0 and the maximum like-
lihood estimator for θ is zero with probability approximately 1/2. The maximum likelihood
estimator’s mass at zero gives some intuition for why confidence regions that directly or in-
directly use asymptotic normality of that estimator can have poor coverage properties near
the critical point (see Rotnitzky et al., 2000 and Bottai, 2003, for details). In this example,
the critical point is at the boundary since we assumed θ ≥ 0 for identifiability, but θ = 0
would still be a critical point if the Wi had an asymmetric distribution and the sign of θ were
identifiable.

2. Inference near critical points.

2.1. Definitions and assumptions. Suppose, independently for i = 1, . . . , n, Yi ∈ R
ri ,

ri ≥ 1, has density f i
θ against a dominating measure γi , for θ in a parameter set � ⊆R

d . For
simplicity, we often write fθ (yi) in place of f i

θ (yi), where yi is an arbitrary realization of Yi .
Let yn = (y1, . . . , yn) be a realization of Yn = (Y1, . . . , Yn) and ∇ denote the derivative oper-
ator with respect to θ . Let also �i(θ;yi) = logfθ (yi), �n(θ;yn) = ∑n

i=1 �i(θ;yi), si(θ;yi) =
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∇�i(θ;yi), sn(θ;yn) = ∇�n(θ;yn), I i (θ) = covθ {si(θ;Yi)} and In(θ) = covθ {sn(θ;Yn)},
where the subscript on cov indicates Yn = (Y1, . . . , Yn) has the distribution indexed by θ ; we
may omit such subscripts when it has been explicitly stated which distribution the random
variables have. Focus will be on inference near points where the Fisher information In is
singular.

DEFINITION 1. We say a point θ ∈ � is critical if In(θ) is singular and noncritical oth-
erwise.

Denote an arbitrary set of orthonormal eigenvectors of In(θ) by {vn
θ1, . . . , v

n
θd}. Then Def-

inition 1 says, equivalently, that θ is a critical point if sn(θ;Yn)ᵀvn
θj is constant almost surely

Pθ for at least one j . In our motivating examples, θ is the parameter vector in a mixed model
but there are other potential applications for the theory in this section. For example, Azzalini
(2014), Section 3.1.3, consider a three-parameter multivariate skew-normal distribution with
singular Fisher information.

As mentioned in the Introduction, inverting common test statistics typically does not give
confidence regions satisfying (1) for subsets of the parameter set including critical points
(Bottai (2003)). To address this, we will consider the score test statistic standardized by ex-
pected Fisher information:

Tn

(
θ;yn) = sn

(
θ;yn)ᵀIn(θ)−1sn

(
θ;yn)

.(2)

The right-hand side of (2) is undefined at critical θ since In(θ) is not invertible there. When
θ is a scalar parameter, the following calculation can be formalized (proof of Theorem 2.1)
to define a continuous extension at critical θ :

lim
δ→0

Tn

(
θ + δ;yn) = lim

δ→0

[{
sn

(
θ + δ;yn)

/δ
}2 varθ+δ

{
sn

(
θ + δ;Yn)

/δ
}−1]

= {∇sn
(
θ;yn)}2 varθ

{∇sn
(
θ;Yn)}−1

,

where the first line results from dividing and multiplying Tn(θ + δ;yn) by δ2, assuming θ + δ

is a noncritical point, and the second line uses the definition of derivative of θ �→ s(θ; ·) at θ

together with regularity conditions, ensuring among other things that sn(θ;yn) = 0 at critical
θ . That is, at critical points the continuous extension of the test statistic for one parameter
is based on the second derivative of the log-likelihood. Notably, if expected information is
replaced by observed, which is not in general zero at critical points, the limit is typically zero.

Now, our interest is twofold, namely conditions that ensure (i) Tn has a continuous ex-
tension to critical points when d ≥ 1 and (ii) confidence regions obtained by inverting that
extension satisfy (1). Both (i) and (ii) are substantially more complicated when d > 1 than
when d = 1 since the eigenvectors and the rank of the Fisher information become important.

We will use the following assumptions.

ASSUMPTION 1. For every i = 1,2, . . . , the distribution fθ (yi)γi(dyi) has the same null
sets for every θ ∈ �.

In light of Assumption 1, we will often write “almost every yi” without specifying the
measure, implicitly referring to fθ(yi)γi(dyi) for any θ ∈ � or the corresponding product
measure when such statements are about yn. Notably, the null sets can be different for differ-
ent i. Indeed, the Yi need not even take values in the same space.

ASSUMPTION 2. For every θ ′ ∈ �, there exists an open ball B = B(θ ′) ⊆R
d centered at

θ ′ on which, for every i = 1,2, . . . and almost every yi , partial derivatives of θ �→ �i(θ;yi)
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of an order k = k(θ ′) ≥ 2 exist and are jointly continuous in (θ, yi). Moreover, there exists a
δ = δ(θ ′) > 0 such that every partial derivative of order at most k satisfies

sup
i=1,2,...

sup
θ∈B∩�,θ̃∈B

∫ ∣∣∣∣ ∂l

∂θ
l1
1 · · · ∂θ

ld
d

�i(θ;yi)|θ=θ̃

∣∣∣∣2+δ

fθ (yi)γi(dyi) < ∞,(3)

where l1, . . . , ld are nonnegative integers summing to l ≤ k.

The ball B in Assumption 2 can include points not in �. Then the assumption should be
understood as saying there exist extensions of the partial derivatives in (3) to B ×Yi , for some
set Yi of full measure, satisfying the outlined conditions. We have sacrificed some generality
for clarity in that, as will be clear later, the moment condition (3) can be weakened to apply
to only certain partial derivatives of the order k. One consequence of Assumption 2 is that
Eθ {sn(θ;Yn)} = 0 (Lemma 0.3 in the Supplementary Material, Ekvall and Bottai (2022)).
Hence, In(θ)vn

θj = 0 is equivalent to sn(θ;yn)ᵀvn
θj = 0 for almost every yn.

For symmetric matrices A and B , we write A � B or B � A if A − B is positive semi-
definite.

ASSUMPTION 3. There exist continuous c1, c2 : � → (0,∞) such that, for every i =
1,2, . . . and θ ∈ �,

c1(θ)I1(θ) � I i (θ) � c2(θ)I1(θ).

Assumption 3 holds with c1 = c2 ≡ 1 if the Yi are identically distributed since in that
case I i = I1. More generally, it controls the null space of In: if In(θ)v = 0 for some n and
v ∈ R

d , then I1(θ)v = 0 and, by Assumption 3, I i (θ)v = 0 for every i. Thus, the critical
points in Definition 1 do not depend on n. At noncritical points, Assumption 3 says, loosely
speaking, that information in individual observations does not grow without bound or tend to
zero. The choice of I1 is arbitrary in the sense that Assumption 3 holds as stated if and only
if it holds with I1 replaced by any other I i .

The next assumption requires some more notation. Let ∇ l
j , j = 1, . . . , d , l = 0,1, . . . ,

denote the lth order derivative operator with respect to θj , with ∇j = ∇1
j . For example,

∇ l
j �n(θ̃;yn) = ∂l�n(θ;yn)/∂θ l

j |θ=θ̃ . For every θ ∈ � and n = 1,2, . . . , let kj = kj (θ, n) ∈
{1,2, . . . } (j = 1, . . . , d) be integers to be specified shortly and define, for i = 1, . . . , n,

s̃i
n(θ;yi) = [{∇k1−1

1 si(θ;yi)
}ᵀ

vn
θ1, . . . ,

{∇kd−1
d si(θ;yi)

}ᵀ
vn
θd

]ᵀ ∈ R
d .

Let also

s̃n
(
θ;yn) =

n∑
i=1

s̃i
n(θ;yi); Ĩn(θ) = covθ

{
s̃n

(
θ;Yn)}

.

We call s̃n(θ;yn) a modified score because it can understood as a two-step modification of
sn(θ;yn): First, sn(θ;yn) is rotated to [vn

θ1, . . . , v
n
θd ]ᵀsn(θ;yn), in which the elements are

uncorrelated linear combinations of first-order derivatives of �n(θ;yn). Second, if kj > 1
for some j , the linear combination in the j th element is replaced by a linear combina-
tion of higher-order partial derivatives. The idea to be formalized is to replace elements in
[vn

θ1, . . . , v
n
θd ]ᵀsn(θ;yn) that are zero for almost every yn at a critical point by linear combi-

nations of higher-order derivatives that are not. Note also s̃n(θ;yi) and Ĩn(θ) depend on the
vn
θj . In particular, the set {vn

θ1, . . . , v
n
θd} is not uniquely determined in general and different

choices lead to different s̃n(θ;yn). Our next assumption says three technical conditions must
hold for at least one choice.
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ASSUMPTION 4. For every θ ∈ � and n = 1,2, . . . , there exist integers kj = kj (θ, n) ∈
{1, . . . , d} (j = 1, . . . , d) and a set of orthonormal eigenvectors {vn

θ1, . . . , v
n
θd} of In(θ) such

that:

(i) Ĩn(θ) is positive definite;
(ii) {∇ l

j sn(θ̃;yn)}ᵀvn
θj = 0, l = 0, . . . , kj − 2, for every θ̃ with θ̃j = θj and almost every

yn;
(iii) kj (θ, n) is upper bounded by the k = k(θ) in Assumption 2 for every j , θ and n.

Condition (i) is essentially a more general, multidimensional version of the requirement
by Bottai (2003) that the second derivative of the log-likelihood has positive variance at
critical points. Indeed, at noncritical θ (i) holds with kj = 1 for all j since s̃n(θ;Yn) =
[vn

θ1, . . . , v
n
θd ]ᵀsn(θ;Yn) has diagonal covariance matrix with the eigenvalues of In(θ) on

the diagonal. Conversely, at critical θ at least one of those eigenvalues is zero, and hence
it must be that kj > 1 for at least one j in order for (i) to hold. For example, we will see
mixed models where (i) holds at a critical θ with vn

θ1 = e1 = [1,0, . . . ,0]ᵀ ∈ R
d , k1 = 2 and

kj = 1, j = 2, . . . , d . Then the first element of s̃n(θ, yn) is ∇2
1�(θ;yn) while the remaining

elements are linear combinations of the elements of sn(θ;yn). While our theory only requires
existence, implementing our method in practice can, at least in some models, require specifi-
cation of a set of kj and numerical computation of a set of vθj satisfying (i); we discuss this
further in Section 3.

Condition (ii) is vacuously satisfied at noncritical points since it only applies to kj ≥ 2.
Consequently, Assumption 4 is weaker than assuming In(θ) is positive definite for every θ

as is common in classical theory. To understand condition (ii) more generally, suppose θ is a
critical point, k1 = 2 and vn

θ1 one of the eigenvectors of In(θ) corresponding to the eigenvalue
zero. As noted following Assumption 2, this implies sn(θ;yn)ᵀvn

θ1 = 0 for almost every yn;
condition (ii) says the same must hold if the score is evaluated at any other θ̃ with first element
θ̃1 = θ1. This motivates the following definition.

DEFINITION 2. We say θj is a critical element with corresponding critical (eigen)vector
v if In(θ̃)v = 0 at every θ̃ with θ̃j = θj .

In general, an eigenvector of the Fisher information with vanishing eigenvalue need not
be a critical vector. For example, if v1 and v2 are critical vectors with corresponding critical
elements θ1 and θ2, then any linear combination of v1 and v2 is also an eigenvector with van-
ishing eigenvalue at every θ̃ where both θ̃1 = θ1 and θ̃2 = θ2; but there is not a corresponding
critical element.

The possibility that kj > 2 in condition (ii) means that, if condition (i) is not satisfied with
kj ∈ {1,2} for all j , then one may pass to higher order derivatives as long as the corresponding
ones of lower order are zero for almost every yn.

Finally, we note Assumption 4 implies the rank of In(θ) is d minus the number of critical
elements and that the assumption is sensitive to parameterization. For example, the model
considered by Azzalini (2014), Section 3.1, does not satisfy Assumption 4 in the first pa-
rameterization discussed by the authors, but can be made to by a simple reparameterization.
Because the test statistic in (2) is invariant under differentiable reparameterizations with full
rank Jacobian, it suffices to verify the conditions in one parameterization for the results to
apply more generally.

ASSUMPTION 5. The noncritical points are dense in �; that is, for any θ ∈ �, there
exists a sequence {θm} ∈ � of noncritical points tending to θ .
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In many settings, the sets of critical elements are discrete subsets of R. Then, if θ is a
critical point with only critical element θj , it is often possible to verify Assumption 5 with,
for example, θm = θ + m−1ej .

2.2. Continuous extension. Our purpose in this section is to prove the following theorem.

THEOREM 2.1. If Assumptions 1–2 and 4–5 hold, then for any n ≥ 1 there is a set Yn of
full measure such that Tn(·; ·) has a continuous extension on � ×Yn, and that extension is

Tn

(
θ;yn) = s̃n

(
θ;yn)

Ĩn(θ)−1s̃n
(
θ;yn)

.

Here and in what follows, we use the same notation for the test statistic in (2) and its
continuous extension given by Theorem 2.1. The expressions in Theorem 2.1 and (2) agree
at noncritical θ since s̃n(θ;yn) = [vn

θ1, . . . , v
n
θd ]ᵀsn(θ;yn) there, and the premulitplication of

any invertible matrix is canceled when standardizing by the covariance matrix. Observe the
continuity in Theorem 2.1 is jointly in the parameter and data. Before giving a proof, we state
and discuss some intermediate results used in that proof. The first is a lemma which, loosely
speaking, says that if the noncritical points are dense, then it is enough to establish continuity
along sequences of noncritical points for it to hold more generally. Proofs of formally stated
results are in the Supplementary Material (Ekvall and Bottai (2022)) if not given here.

LEMMA 2.2. Suppose Assumption 5 holds and that, for every θ ∈ � and yn in some
Yn ⊆ R

r1 × · · · × R
rn , with n ≥ 1 fixed, limm→∞ Tn(θm;yn

m) exists and is the same for all
sequences {θm} ∈ � of noncritical points tending to θ and sequences {yn

m} ∈ Yn tending to
yn; then Tn(·; ·) has a continuous extension on � ×Yn.

In order to use Lemma 2.2 to prove Theorem 2.1, one must show that Tn converges along
sequences of noncritical points tending to critical points. Evaluating the score at such se-
quences gives a sequence of score vectors whose covariance matrices are nonsingular but
tend to a singular limit. The following lemma says those score vectors can be scaled to tend
to a limit with positive definite covariance matrix.

LEMMA 2.3. Suppose Assumptions 1, 2 and 4 hold and let {θm} ∈ � be a sequence of
noncritical points tending to some θ ∈ �. Then there exist sequences of nonzero constants
{amj }, j = 1, . . . , d , and a set Yn of full measure such that, for any {yn

m} ∈ Yn tending to a
yn ∈ Yn as m → ∞,

amj sn
(
θm;yn

m

)ᵀ
vn
θj → s̃nj

(
θ;yn)

,

where s̃nj is the j th element of s̃n in Assumption 4.

PROOF. Let Yn be the intersection of the sets of full measure in Assumptions 2 and 4.
Since the limit point θ and n are fixed, denote vj = vn

θj for simplicity. For an arbitrary j

and all large enough m, condition (ii) of Assumption 2 lets us apply Taylor’s theorem with
Lagrange-form remainder to the map θmj �→ v

ᵀ
j sn(θm;yn

m) to get that v
ᵀ
j sn(θm;yn

m) is equal
to

kj−2∑
l=0

(θmj − θj )
lv

ᵀ
j {∇ l

j sn(θ
(j)
m ;yn

m)}
l! + (θmj − θj )

kj−1v
ᵀ
j {∇kj−1

j sn(θ̃
(j)
m ;yn

m)}
(kj − 1)! ,

where θ
(j)
m and θ̃

(j)
m are θm with θmj replaced by, respectively, θj and a point between θmj

and θj ; and kj is selected in accordance with Assumption 4 at θ . By condition (ii) of that
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assumption, the first kj − 1 terms in the last display vanish. Now set amj = (kj − 1)!/(θmj −
θj )

kj−1, which is always defined since θm is noncritical, and hence θmj �= θj by condition

(ii) of Assumption 4. Then amjv
ᵀ
j sn(θm;yn

m) = v
ᵀ
j {∇kj−1

j sn(θ̃
(j)
m ;yn

m)}, which has the desired
limit by continuity of partial derivatives given by Assumption 2. �

The importance of controlling the behavior of the eigenvectors of the Fisher information
near critical points is highlighted by the proof of Lemma 2.3: the first kj −1 terms in the Tay-
lor expansions need not vanish if the eigenvectors depend on θ in a way violating condition
(ii) of Assumption 4. We are ready to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Fix n, θ ∈ � and yn ∈ Yn, where Yn is the intersection of
the sets of full measure given by Assumptions 2 and 4. Pick Vn = [vn

θ1, . . . , v
n
θd ] ∈ R

d×d

satisfying Assumption 4. By Lemma 2.2, it suffices to show

lim
m→∞ sn

(
θm;yn

m

)ᵀI(θm)−1sn
(
θm;yn

m

) = s̃
(
θ;yn)ᵀĨn(θ)−1s̃

(
θ;yn)

for an arbitrary sequence of noncritical points {θm} tending to θ and {yn
m} tending to yn.

We note it is enough to establish the limit for any one Vn satisfying Assumption 4 since
the sequence does not depend on the choice, and hence neither can the limit. Let Am =
diag(am1, . . . , amd) be defined by the sequences of constants given by Lemma 2.3. Then
AmV

ᵀ
n is invertible and consequently

Tn

(
θm;yn

m

) = {
AmV ᵀ

n sn
(
θm;yn

m

)}ᵀ{
AmV ᵀ

n In(θm)AmVn

}−1
AmV ᵀ

n sn
(
θm;yn

m

)
.

Lemma 2.3 says, for the s̃n in Assumption 4, AmV
ᵀ
n sn(θm, yn

m) → s̃n(θ, yn). Thus, we are
done if we can show AmV

ᵀ
n I(θm)VnAm = cov{AmV

ᵀ
n s(θm,Y n

m)} → Ĩn(θ), where Yn
m =

(Ym1, . . . , Ymn) has the distribution indexed by θm. To that end, note θm → θ implies
f i

θm
→ f i

θ pointwise in yi for every i by continuity implied by Assumption 2. Hence, the
joint density for Yn

m tends pointwise to that of a Yn with distribution indexed by θ . Thus,
Yn

m → Yn in total variation by Scheffe’s theorem (Billingsley (1995), Theorem 16.12),
and hence also in distribution. To show the desired convergence of covariance matrices,
we may thus assume, by Skorokhod’s representation theorem (Billingsley (1999), The-
orem 6.7), that Yn

m → Yn almost surely. But then AmV
ᵀ
n sn(θm;Yn

m) → s̃(θ, Y n) almost
surely by Lemma 2.3. Now convergence of the covariance matrices follows if the elements
of the sequence {AmV

ᵀ
n sn(θm;Yn

m)sn(θm;Yn
m)ᵀVnAm} are uniformly integrable (Billingsley

(1995), Theorem 25.12). To show they are, note the j th element of AmV
ᵀ
n sn(θm,Y n

m) is

{∇kj−1
j sn(θ̃

(j)
m ;Yn

m)}ᵀvθj , with θ̃
(j)
m selected as in Lemma 2.3. Thus, the (j, l)th element of

AmV
ᵀ
n sn(θm;Yn

m)sn(θm;Yn
m)ᵀV Am is

{∇kj−1
j sn

(
θ̃ (j)
m ;Yn

m

)}ᵀ
vθj

{∇kl−1
l sn

(
θ̃ (l)
m ;Yn

m

)}ᵀ
vθl,

which has uniformly bounded (1 + δ/2)th moment by the Cauchy–Schwarz inequality and
Assumption 2. From this the desired uniform integrability follows (Billingsley (1995), 25.13)
and that completes the proof. �

2.3. Asymptotic uniform coverage probability. We now turn to confidence regions ob-
tained by inverting the continuous extension Tn. Specifically, for α ∈ (0,1), define

Rn(α) = {
θ ∈ � : Tn

(
θ;Yn) ≤ qd,1−α

}
,(4)

where qd,1−α is the (1 − α)th quantile of the chi-square distribution with d degrees of free-
dom. We have the following main result of the section.
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THEOREM 2.4. Under Assumptions 1–5, the confidence region Rn(α) in (4) has asymp-
totically correct uniform coverage probability on compact sets; that is, it satisfies (1).

We need some intermediate results before proving Theorem 2.4. Our strategy will be to
prove that, for any compact C ⊆ � and α ∈ (0,1),

lim
n→∞ sup

θ∈C

∣∣Pθ

{
θ ∈ Rn(α)

} − (1 − α)
∣∣ = 0,(5)

which implies (1). The following two lemmas let us focus on convergence along sequence of
noncritical points as in the previous section, but now taking the stochastic properties of the
data into account.

LEMMA 2.5. Equation (5) holds for every compact C ⊆ � if and only if, for every con-
vergent sequence {θn} ∈ � as n → ∞,

Tn

(
θn;Yn

n

)
� χ2

d ,(6)

where Yn
n = (Yn1, . . . , Ynn) has the distribution indexed by θn.

The proof of Lemma 2.5 essentially amounts to showing continuous convergence is equiv-
alent to uniform convergence on compact sets, the function of interest being θ �→ Pθ {θ ∈
Rn(α)}. Lemma 2.5 suggests, roughly speaking, that to get reliable confidence regions the
distribution of the test statistic should be the same regardless of how close to the critical point
the true parameter is.

The next lemma says it suffices to consider sequences of noncritical points. Specifically,
we need not treat the asymptotic distribution at critical points separately.

LEMMA 2.6. If Assumptions 1–5 hold and (6) holds for every convergent sequence
{θn} ∈ � of noncritical points, then (6) holds for any convergent sequence in �.

PROOF. Let Fn denote the cumulative distribution function of Tn(θn;Yn
n ) and let F de-

note that of χ2
d . Assumption 5 says that, for every fixed n, we can pick a sequence of non-

critical points {θm
n } tending to θn as m → ∞ with n fixed. Assumptions 1–5 ensure The-

orem 2.1 holds and this implies, essentially by Slutsky and continuous mapping theorems
(Lemma 0.2 in the Supplementary Material, Ekvall and Bottai (2022)),

Tn

(
θm
n ;Yn

m

)
� Tn

(
θn;Yn

n

)
, m → ∞,

where Yn
m = (Ym1, . . . , Ymn) has the distribution indexed by θm

n . Thus, the corresponding cu-
mulative distribution functions {Fm

n } tend to Fn at every point of continuity of Fn as m → ∞
with n fixed. Let Dn be the set of discontinuities of Fn and D = ⋃

n Dn. Since any cumulative
distribution function has at most countably many discontinuities, D is countable as a count-
able union of countable sets. Now for any t ∈ R \ D, we can pick, for every n, an m = m(n)

large enough that ‖θm(n)
n − θn‖ ≤ 1/n and |Fm(n)

n (t) − Fn(t)| ≤ 1/n. We then have by the
triangle inequality, ∣∣Fn(t) − F(t)

∣∣ ≤ 1/n + ∣∣Fm(n)
n (t) − F(t)

∣∣,
which tends to zero as n → ∞ by the assumption that (6) holds along sequences of non-
critical points since F is continuous; in particular, t is a point of continuity of F . The proof is
completed by observing that, since D is countable, R \ D is dense in R, and hence the con-
vergence in fact holds at every t ∈ R (Fristedt and Gray (1997), Proposition 2, Chapter 14).

�
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We are ready to prove Theorem 2.4

PROOF OF THEOREM 2.4. By Lemma 2.6, it suffices to consider an arbitrary se-
quence {θn} of noncritical points tending to a θ ∈ �. Let Un = AnV

ᵀ
n sn(θn;Yn

n ), where
Vn = [vn

θ1, . . . , v
n
θd ] ∈ R

d×d satisfies Assumption 4 at θ for every n, An = diag(an1, . . . , and)

is a scaling matrix defined by the {anj } given by Lemma 2.3 (with the index m = n),
and Yn

n = (Yn1, . . . , Ynn) has the distribution indexed by θn. By reordering the elements
of θ if necessary, we may partition Vn = [Vn1,Vn2] and have that the columns of Vn1 are
the critical vectors at θ . As noted following Assumption 3, these actually do not depend
on n, but Vn2 may. With these definitions, Tn(θn;Yn

n ) = U
ᵀ
n cov(Un)

−1Un, and hence the
continuous mapping theorem (Billingsley (1999), Theorem 2.7) says it suffices to show
cov(Un)

−1/2Un � N (0, Id).
Let Unt = tᵀUn for an arbitrary t ∈ R

d with ‖t‖ = 1. We start by verifying Lyapunov’s
conditions (Billingsley (1995), Theorem 27.3) for Unt/σnt � N (0,1), where σ 2

nt = var(Unt ).
First, E(Unt ) = 0 since E{sn(θn;Yn

n )} = 0. Thus, it suffices to show σ 2
nt ≥ εn for some ε > 0

and E(|Unti |2+δ) ≤ M for some δ > 0 and M < ∞, where Unti = tᵀAnV
ᵀ
n si(θn;Yni) is the

ith summand of Unt . For the latter we have, since ‖t‖ = ‖vnj‖ = 1, using the triangle and
generalized mean inequalities, with θ̃ (j) as in the proof of Lemma 2.3,

|Unti |2+δ ≤
(

d∑
j=1

∣∣vᵀ
nj∇kj−1

j si(θ̃ (j)
n ;Yni

)∣∣)2+δ

≤ 41+δ
d∑

j=1

d∑
l=1

∣∣∇kj−1
j ∇l�

i(θ̃ (j)
n ;Yni

)∣∣2+δ
,

whose expectation is less than some M < ∞ for all large enough n by Assumptions 2 and 4.
Next, by Assumption 3,

σ 2
nt ≥ nc1(θn)t

ᵀAnV
ᵀ
n I1(θn)VnAnt ≥ nc1(θn)e

{
AnV

ᵀ
n I1(θn)VnAn

}
,

where e(·) is the smallest eigenvalue. Since c1 is continuous and positive at θ , the right-hand
side is greater than εn for some ε > 0 if lim infn→∞ e{AnV

ᵀ
n I1(θn)VnAn} > 0. We will prove

this by contradiction. To that end, suppose lim infn→∞ e{AnV
ᵀ
n I1(θn)VnAn} = 0 and extract

a subsequence tending to zero. Then, by compactness of the set of semiorthogonal matri-
ces and the Bolzano–Weierstrass property (Folland (2007), Theorem 0.25), there is a further
subsequence along which Vn2 tends to a semiorthogonal V2. Along this subsequence, by ar-
guments almost identical to those in the proof of Theorem 2.1, AnV

ᵀ
n s1(θn;Yn1) tends in dis-

tribution to a random vector with positive definite covariance matrix, and AnV
ᵀ
n I1(θn)VnAn

tends to that covariance matrix. Thus, along the subsequence, by Weyl’s inequalities (Bhatia
(1997), Section III.2), e{AnV

ᵀ
n I1(θn)VnAn} tends to a strictly positive number, which is the

desired contradiction.
We have proven Unt/σnt � N (0,1), from which cov(Un)

−1/2Un � N (0, Id) follows
(Biscio, Poinas and Waagepetersen (2018), Lemma 2.1) if

0 < lim inf
n→∞ e

{
n−1 cov(Un)

} ≤ lim sup
n→∞

ē
{
n−1 cov(Un)

}
< ∞,

where ē(·) is the maximum eigenvalue. For the first inequality, Assumption 3 gives
n−1 cov(Un) � c1(θn)AnV

ᵀ
n I1(θn)VnAn, and we have already shown the right-hand side has

smallest eigenvalue asymptotically bounded away from zero. A similar argument, using that
Assumption 3 implies ē{n−1 cov(Un)} ≤ c2(θn)ē{AnV

ᵀ
n I1(θn)VnAn}, establishes the upper

bound and this completes the proof. �

Theorems 2.1 and 2.4 have the following corollary, which recovers a result of Bottai (2003)
but with several conditions weakened. The proof is a straightforward verification of Assump-
tions 2–5, and hence omitted.
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COROLLARY 2.7. If d = 1; the Yi are identically distributed; Assumption 1 holds; for
every θ ′ ∈ � there exists an open ball B = B(θ ′) ⊆ R centered at θ ′ such that (i) ∇2�1(θ;y1)

exists on B for almost every y1 and is continuous in (θ, y1), and (ii) it holds that

sup
θ∈B∩�,θ̃∈B

∫ ∣∣∇2�1(θ̃;y1)
∣∣2+δ

fθ (y1)γ1(dy1) < ∞

for some δ = δ(θ ′) > 0; and varθ {∇2�1(θ;Y1)} > 0 for every critical θ ; then the conclusions
of Theorems 2.1 and 2.4 hold.

We end this section by illustrating the introduced ideas in the example from the Introduc-
tion. More complicated mixed models are considered in the next section.

EXAMPLE 1 (continued). Recall that the Yi ∈R
r , i = 1, . . . , n, are independent and mul-

tivariate normally distributed with mean 0 and covariance matrix �(θ) = θ21r1ᵀ
r + Ir , and

that the score for one observation is

si(θ;yi) = − rθ

1 + rθ2 + (
y

ᵀ
i 1r

)2 θ

(1 + rθ2)2 = θ

1 + rθ2

(
−r + (y

ᵀ
i 1r )

2

1 + rθ2

)
.

Since Yi has positive variance for all θ , the score is equal to zero for almost every yi if and
only if θ = 0, verifying Assumption 5. Assumption 1 holds since fθ (yi) > 0 for all yi ∈ R

r ,
with γi ≡ γ being Lebesgue measure on R

r . To verify Assumption 4, observe that at θ = 0
the second derivative of the log-likelihood is

lim
θ→0

si(θ;yi) − si(0;yi)

θ
= lim

θ→0

[
1

1 + rθ2

(
−r + (y

ᵀ
i 1r )

2

1 + rθ2

)]
= −r + (

y
ᵀ
i 1r

)2
,

which has variance bounded away from zero when evaluated at yi = Yi . Thus, Assumption 4
holds at θ = 0 with k1 = 2 and at θ �= 0 with k1 = 1. It is straightforward to verify Assump-
tions 2 and 3, and hence conclude Theorems 2.1 and 2.4 apply. For additional insight, we
also provide a more direct argument for why the score test standardized by expected infor-
mation works in this example while other common test statistics do not. At θ �= 0 (see the
Supplementary Material, Ekvall and Bottai (2022) for details),

Tn

(
θ;Yn) = 1

2rn

{
−rn +

n∑
i=1

(
Y

ᵀ
i 1r

)2
/
(
1 + rθ2)}2

∼ (−rn + rχ2
n)2

2rn
.

It is immediate from the middle expression that Tn(·; ·) has a continuous extension on
[0,∞) × R

nr . Essentially, standardizing by expected information cancels the leading fac-
tor θ/(1 + rθ2) in the expression for si(θ;yi), which was the reason for the singularity at
θ = 0. Notably, this cancellation does not happen if one instead standardizes by observed
information. The last expression shows that, in this example, the distribution of the proposed
test statistic is in fact independent of the parameter, and hence it is almost immediate that (6),
and hence Theorem 2.4 hold; writing χ2

n as the sum of n independent χ2
1 and an appeal to the

classical central limit theorem is all that is needed. To emphasize the fact that other common
test statistics do not enjoy the same asymptotic properties, we show in Theorem C.1 of the
Supplementary Material (Ekvall and Bottai (2022)) that the asymptotic distribution of the
score test statistic standardized by observed information evaluated at the true θn, is different
depending on how {θn} tends to 0.
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3. Inference near critical points in mixed models.

3.1. Scale parameters at zero. Suppose momentarily the Yi are identically distributed;
that is, they are independent copies of some Y ∈ R

r . Then In(θ) = nI1(θ) and we write
I(θ) = I1(θ). Similarly, we drop the observation index on y ∈ R

r , s(θ;y) = ∇ logfθ(y) and
γ . Suppose further Y has conditional density fθ (y | w) against γ given a vector of random
effects W ∈ R

q whose elements are independent with mean zero and unit variance. Denote
the distribution of W by ν. We partition the parameter vector as θ = (λ,ψ) ∈ R

d1 × R
d2

and assume, for some parameter matrix � = �(λ) ∈ R
q×q and known h : Rr ×R

d2 ×R
q →

[0,∞),

fθ (y | w) = h
(
y,ψ,�(λ)w

)
.

We call λ a scale parameter since it determines the matrix �(λ) scaling W . The vector ψ in-
cludes any other parameters in the distribution of Y | W . With these assumptions, the marginal
distribution of Y has density against γ given by

fθ(y) =
∫

fθ (y | w)ν(dw) =
∫

h(y,ψ,�w)ν(dw).(7)

For example, a generalized linear mixed model with linear predictor Xψ + ZU , where U =
�W ∼ N (0,��ᵀ), and X ∈ R

r×d2 and Z ∈ R
r×q are design matrices, satisfies (7) for an

appropriate choice of h.
In practice it is often possible to define ψ , λ, � and h so that any critical points are so

because the leading d1 ×d1 block of I(θ) is singular. That is, all critical points are due to lin-
ear combinations of the scores for the scale parameters being equal to zero almost surely. To
investigate when the latter can happen, let ∇(3)h(y,ψ,�w) denote the gradient of h(y,ψ, ·)
evaluated at �w, the subscript (3) here indicating gradient with respect to the third argument
vector. Then, assuming the derivatives exist and can be moved inside the integral, the j th
element of s(θ;y), j = 1, . . . , d1 is

1

fθ (y)

∫
∇jfθ (y | w)ν(dw) = 1

fθ (y)

∫ {∇(3)h(y,ψ,�w)
}ᵀ{∇j�(λ)

}
wν(dw),(8)

where ∇j acts elementwise on matrices. The following result gives a sufficient condition for
linear combinations of these scores to be equal to zero for almost every y.

PROPOSITION 3.1. If (8) holds at θ ∈ � and for a v = [v1, . . . , vd1,0, . . . ,0]ᵀ ∈ R
d , it

holds that
d1∑

j=1

vj

{∇j�(λ)
}
W and �(λ)W

are independent under θ ; then I(θ)v = 0.

PROOF. It suffices to show that vᵀs(θ;y) = 0 for almost every y. We have

vᵀs(θ;y) = 1

fθ (y)

∫ {∇(3)h(y,ψ,�w)
}ᵀ

d1∑
j=1

vj

{∇j�(λ)
}
wν(dw).

By the assumptions, the integral is the expectation of the inner product of two independent
random vectors. Thus, since (measurable) functions of independent random variables are
independent, the integral in the last display is∫ {∇3h(y,ψ,�w)

}ᵀ
ν(dw)

∫ d1∑
j=1

vj

{∇j�(λ)
}
wν(dw),

which is equal to zero since
∫

wν(dw) = 0, and that completes the proof. �
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Proposition 3.1 can help identify critical points. In fact, even though the condition that∑d1
j=1 vj {∇j�(λ)}W and �W are independent random variables is not necessary, we will

see that in practice it often identifies all critical points.
In what follows, to facilitate further analysis, we assume � is diagonal. Specifically, we

assume every diagonal element of � is one of the λj . Then the λj are scale parameters in the
usual sense and

�(λ) = diag(λ(1), . . . , λ(q)),(9)

where λ(l) means the λj (j = 1, . . . , d1) in the lth diagonal element of �(λ) (l = 1, . . . , q).
For example, if q = 3 one possibility is that �(λ) = diag(λ1, λ2, λ1) so that the first and third
element of W have the same scale parameter; then d1 = 2, λ(1) = λ1, λ(2) = λ2 and λ(3) = λ1.
Assuming (9) is common in practice and is less restrictive than it may first seem: it allows for
the possibility that w affects the conditional density fθ (y | w) through H�w for some H ∈
R

q×q , which may depend on ψ . Then U = H�W is a vector of dependent random effects
whose scales are determined by λ and whose dependence is determined by H . In particular,
by letting H be an orthogonal matrix the λ2

j are the eigenvalues of covθ (U) = H�(λ)2H ᵀ.
With (9), Proposition 3.1 has the following corollary which says standard basis vectors are

critical vectors for scale parameters at zero.

COROLLARY 3.2. If (8) holds at θ ∈ �, �(λ) satisfies (9), and θj = λj = 0; then
I(θ)ej = 0, where ej is the j th standard basis vector in R

d .

PROOF. With (9), ∇j�(λ), j = 1, . . . , d1, is a diagonal matrix whose lth diagonal ele-
ment (l = 1, . . . , q) is 1 if the lth diagonal element of �(λ) is λj , and zero otherwise. Thus, at
θ such that λj = 0, {∇j�(λ)}W is a function of the elements of W scaled by λj , and �(λ)W

is a function of the elements of W not scaled by λj . Thus, Proposition 3.1 is satisfied with
v = ej . �

We illustrate the wide applicability of Corollary 3.2 using another example.

EXAMPLE 2 (Generalized linear mixed model). Let X ∈ R
r×d2 and Z ∈R

r×q be design
matrices and suppose

fθ (y | w) = h(y,ψ,�w) = exp
{
yᵀ(Xψ + Z�w) − c(Xψ + Z�w)

}
,

where c : Rr → R is the sum of the cumulant functions for the r responses (see, e.g.,
McCulloch, Searle and Neuhaus (2008), for definitions). For example, the j th element of
∇c(Xψ + Z�w), the gradient of c evaluated at the linear predictor, is the conditional mean
of the j th response given w. Assume (9) and, for j = 1, . . . , d1, let [j ] denote the set of
k ∈ {1, . . . , q} such that �kk = λj . Then

∇jZ�(λ)w = ∑
k∈[j ]

Zkwk,

where Zk is the kth column of Z. Hence, assuming differentiation under the integral is per-
missible,

sj (θ;y) = 1

fθ (y)

∫
fθ (y | w)

{
y − ∇c(Xψ + Z�w)

}ᵀ ∑
k∈[j ]

Zkwkν(dw).

Corollary 3.2 suggests sj (θ;y) is zero for almost every y at θ such that λj = 0, which can
here be verified directly: the sum in the integral is a function of the wk scaled by λj , while the
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remaining part of the integrand is a function of the wk not scaled by λj . Hence, the integral
is ∫

fψ(y | �w)
[
y − ∇c(Xψ + Z�w)

]ᵀ
ν(dw)

∫ ∑
k∈[j ]

Zkwkν(dw),

which is equal to zero for every y since the second integral is the expectation of a linear
combination of the Wk , which have mean zero.

It is clear from Example 2 that critical points occur in many mixed models and that stan-
dard basis vectors are often critical vectors. When all critical vectors are standard basis vec-
tors, the calculations required to verify Assumption 4 are simplified. The following result
illustrates this point and will be useful in examples.

PROPOSITION 3.3. If Assumptions 1–2 hold, (i) Y1, . . . , Yn are independent copies of
Y ∈ R

r , (ii) for every θ ∈ � the null space of I(θ) is spanned by {ej , j : λj = 0} and (iii) the
random vector

s̄(θ;Y) = [∇k1
1 logfθ (Y ), . . . ,∇kd

d logfθ (Y )
]ᵀ

, Y ∼ fθ ,

where kj = kj (θ) = 2 if θj = λj = 0 and kj = 1 otherwise, has positive definite covariance
matrix with finite entries at every θ ∈ �; then Assumption 4 holds.

PROOF OF PROPOSITION 3.3. Let {vθ1, . . . , vθd} be orthonormal eigenvectors of I(θ)

and V = [vθ1, . . . , vθd ]. Suppose the rank of I(θ) is d − d∗, 0 ≤ d∗ ≤ d . By condition (i),
upon reordering θ if necessary, we may assume vθj = ej , j = 1, . . . , d∗. In the definition
of s̃n(θ;yn), set k1 = · · · = kd∗ = 2 and kd∗+1 = · · ·kd = 1. Then, since vθj has zeros in
the first d∗ entries for j ≥ d∗ + 1 by orthogonality, s̃n(θ;Yn) = V ᵀ ∑n

i=1 s̄(θ;Yi). Thus,
Ĩn(θ) = nV ᵀ covθ {s̄(θ;Y)}V , which is positive definite if and only if covθ {s̄(θ;Y)} is; this
shows condition (i) of Assumption 4 holds.

Condition (ii) of Assumption 4 holds because sn(θ̃;yn)ᵀej = 0 for almost every yn is
equivalent to In(θ̃) = nI(θ̃)ej = 0, and this holds at any θ̃ with θ̃j = θj = 0 by the assump-
tion that {ej , j : λj = 0} spans the null space of I(θ).

Condition (iii) of Assumption 4 holds because we have assumed kj ≤ 2, which completes
the proof. �

In the following two sections, we verify the conditions of Theorems 2.1 and 2.4 in two
mixed models. The first is an exponential mixed model with independent and identically dis-
tributed observations of a vector of correlated, positive responses. It has one scale parameter,
one fixed effect parameter and a nonnormal random effect. This example illustrates our theory
in nonlinear mixed models with nonstandard random effect distributions. The second model is
a quite general version of the linear mixed model with normally distributed random effects. It
has general design matrices Xi and Zi , possibly different for different i = 1, . . . n, and hence
nonidentically distributed observations; and several fixed and random effect parameters.

3.2. Exponential mixed model with uniform random effect. Suppose the Yi , i = 1, . . . , n,
are independent copies of a Y ∈ R

2 which has conditionally independent elements given
W ∈ R with conditional densities

fθ(yj | w) = (ψ + λw) exp
{−yj (ψ + λw)

}
I(yj ≥ 0); θ = (λ,ψ) ∈ � ⊆ R

2,(10)

where yj is the j th element of y ∈ R
2; we omit observation indexes for the remainder of

the section and work only with the generic Y ∈ R
2. The density fθ (yj | w) is that of an
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exponential random variable with mean 1/(ψ + λw). We have selected r = 2 responses to
simplify calculations, but r ≥ 2 presents no fundamental difficulties. The specification clearly
requires ψ + λW be positive almost surely. There are many potentially useful specifications
satisfying this, but to be concrete suppose W is uniform on (−√

3,
√

3), so that ν(dw) =
f (w)dw with f (w) = 12−1/2

I(|w| ≤ √
3); and the parameter set is � = {(λ,ψ) ∈ [0,∞) ×

R : ψ >
√

3λ}. The log-likelihood for one observation is, ignoring additive constants,

logfθ (y) = log
∫

fθ (y | w)ν(dw) = log
∫

(ψ + λw)2 exp
{−(ψ + λw)y•

}
ν(dw),

where y• = y1 + y2. The score for λ is

sλ(θ;y) = − 1

fθ (y)

∫
fθ (y | w)

{
y• − 2/(ψ + λw)

}
wν(dw).

LEMMA 3.4. In the exponential mixed model (10), it holds for any θ = (0,ψ) ∈ � that
varθ {sλ(θ, Y )} = 0 and varθ {∇2

1�(θ;Y)} > 0.

PROOF. Setting θ = (0,ψ) in the expression for sλ(θ;y) and moving terms that do
not depend on w outside the integral gives sλ(0,ψ;y) = −fθ(y)−1ψ exp(−ψy•){y• −
2/ψ} ∫

wν(dw) = 0. Moreover, when sλ(θ;y) = 0,

∇2
1 logfθ (Y ) = − 1

fθ (Y )

∫
fθ (Y | w)

[{
Y• − 2/(ψ + λw)

}2 − 2/(ψ + λw)2]
w2ν(dw),

where logfθ (Y ) means fθ evaluated at Y ∼ fθ . When λ = 0, this simplifies to (Y• −2/ψ)2 −
2/ψ2, which has positive variance under θ = (0,ψ). �

Lemma 3.4 shows θ = (0,ψ) is a critical point for any ψ , agreeing with Corollary 3.2. It
also shows the corresponding second derivative of the log-likelihood has positive variance if
λ = 0, suggesting it may be possible to verify Assumption 4 with k1 = 2 at θ with λ = 0 and
k1 = 1 elsewhere. The following lemma will be helpful to that end.

LEMMA 3.5. In the exponential mixed model (10), the information matrix I(θ) has rank
one if λ = 0 and rank two otherwise.

PROOF. The score for ψ is sψ(θ;y) = −fθ (y)−1 ∫
fθ (y | w){y• − 2/(ψ + λw)}ν(dw).

Thus, when λ = 0, sψ(θ;Y) = Y• − 2/ψ , which has positive variance. In conjunction with
Lemma 3.4, this shows the rank of I(θ) is one when λ = 0. Suppose λ > 0 and make the
change of variables t = (ψ + λw)y• in the integral in the definition of the log-likelihood.
Letting G(t) = e−t (t2 + 2t + 2), which is an antiderivative of g(t) = −t2e−t , gives

logfθ (y) = − log(λ) + log
{
G(ψ − √

3y•λ) − G(ψ + √
3y•λ)

}
.

Differentiating with respect to λ and ψ , taking an arbitrary linear combination given by v =
[v1, v2]ᵀ ∈ R

2, and observing the (Lebesgue) density for Y• is positive on (0,∞) shows
I(θ)v = 0 only if

t �→ v1λ
−1t{g(ψ − t) + g(ψ + t)} − v2{g(ψ − t) − g(ψ + t)}

G(ψ − t) − G(ψ + t)

is constant on (0,∞), possibly except on a Lebesgue null set. Verifying this map is indeed
nonconstant on a set of positive Lebesgue measure is routine so we omit the details. �

We are ready to verify Assumptions 1–5, giving the main result of the section.
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THEOREM 3.6. The conclusions of Theorems 2.1 and 2.4 hold in the exponential mixed
model (10).

PROOF. Assumption 1 holds with γ being Lebesgue measure since fθ (y) > 0 for all
y ∈ (0,∞)2 and θ ∈ �.

To verify the moment condition in Assumption 2, it suffices by Lemma 3.5 to find locally
uniform bounds of

∫ |sλ(θ̃;y)|3fθ (y)dy and
∫ |sψ(θ̃;y)|3fθ (y)dy around an arbitrary θ ′ ∈

�, and of
∫ |∇2

1 logfθ̃ (y)|3fθ (y)dy around θ ′ with λ′ = 0. For the former, observe that for
any k ≥ 1, by Jensen’s inequality and using fθ (y | w)f (w)/fθ (y) = fθ (w | y),∫ ∣∣sλ(θ̃;y)

∣∣kfθ (y)dy =
∫ ∣∣∣∣

∫ {
y• − 2/(ψ̃ + λ̃w)

}
w

fθ̃ (y | w)f (w)

fθ̃ (y)
dw

∣∣∣∣kfθ (y)dy

≤
∫ ∫ ∣∣{y• − 2/(ψ̃ + λ̃w)

}
w

∣∣kfθ̃ (w | y)dwfθ(y)dy.

Now for any θ ′ ∈ �, since ψ > λ
√

3 ≥ λ|w|, we can find an M < ∞ and a ball B centered
at θ ′ small enough that 1/(ψ + λw) ≤ M for all (ψ,λ) ∈ B and w ∈ (−√

3,
√

3). Then for
θ̃ ∈ B , by Jensen’s inequality (twice), the inner integral less than 3k/22k−1(|y•|k + |2M|k) ≤
3k/22k−1{2k−1(|y1|k + |y2|k) + |2M|k)}. Thus, the last line in the last display is bounded
uniformly for (θ̃ , θ) ∈ B × B if Eθ (Y

k
j ) is, j = 1,2. But for θ ∈ B , Eθ (Y

k
j ) = Eθ {Eθ (Y

k
j |

W)} = k!E{1/(ψ + λW)k} ≤ k!Mk . The other moment bounds can be handled similar to
show Assumption 2 holds; we omit the details.

Assumption 3 holds because the Yi are identically distributed.
We use Proposition 3.3 to verify Assumption 4. Condition (i) of that proposition is by

assumption and condition (ii) is established in Lemma 3.5. To verify condition (iii), it suffices
by Lemma 3.5 to show that, when λ = 0, v1∇2

1 logfθ (y) + v2sψ(θ;y) is constant for almost
every y only if v1 = v2 = 0; this clearly holds since the linear combination is v1(y• −2/ψ)2 −
2v1/ψ

2 + v2(y• − 2ψ).
Assumption 5 holds because the only critical points are those with λ = 0, and this com-

pletes the proof. �

3.3. Linear mixed models. Consider a linear mixed model which assumes, for some ψ ∈
R

d2 and � satisfying (9), independently for i = 1, . . . , n,

Yi | Xi,Wi ∼ N
(
Xiψ + Zi�Wi,σ

2Iri

)
, Wi | Xi ∼ N (0, Iri ),(11)

where Zi ∈ R
ri×q is a design matrix and Xi ∈ R

ri×d2 a matrix of predictors. The predictors
can be nonstochastic or, more generally, have a distribution not depending on θ , possibly
different for different i. Assume also for simplicity that σ 2 > 0 is known. When σ 2 = 1 and
observations are identically distributed, this model is a special case of the generalized linear
mixed model in Example 2.

We will first obtain a reliable confidence region for θ = (λ,ψ) ∈ � = [0,∞)d1 × R
d2 by

verifying the conditions of Theorem 2.4. Then we show how that result can be modified to
give a reliable confidence region for λ only, with ψ a nuisance parameter. The model implies
the distribution of Yi | Xi is multivariate normal with mean Xiψ and covariance matrix

�i = �i(λ) = σ 2Iri +
d1∑

j=1

λ2
jH

i
j ,

where Hi
j = ∑

k∈[j ] Zk
i (Z

k
i )

ᵀ ∈ R
ri×ri is the sum of outer products of columns of Zi cor-

responding to random effects scaled by λj , j = 1, . . . , d1. The log-likelihood is, ignoring
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additive terms not depending on θ ,

�n

(
θ;yn,Xn) =

n∑
i=1

{
−1

2
log

∣∣�i(λ)
∣∣ − 1

2
(yi − Xiψ)ᵀ�i(λ)−1(yi − Xiψ)

}
,

where Xn = (X1, . . . ,Xn). Differentiating with respect to λj gives, for j = 1, . . . , d1,

si
j (θ;yi,Xi) = λj tr

{
�−1

i H i
j − �−1

i (yi − Xiψ)(yi − Xiψ)ᵀ�−1
i H i

j

}
,

which is equal to zero for every i when λj = 0. Thus, scale parameters at zero are critical
points, agreeing with Corollary 3.2. We also have the following partial converse, essentially
saying that only scale parameters can be critical elements.

LEMMA 3.7. The Fisher information I i (θ) for one observation in the linear mixed
model (11) is block-diagonal and, if e{E(X

ᵀ
i Xi)} > 0, is singular if and only if its leading

block I i
λ(θ) = covθ {si

λ(θ;Yi,Xi)} is, where e(·) is the smallest eigenvalue.

The lemma holds as stated with nonstochastic predictors, but notation can be simplified
since E(X

ᵀ
i Xi) = X

ᵀ
i Xi in that case. The following lemma gives a lower bound on the (con-

ditional) variance of any linear combination of the score for the scale parameters. Together
with the previous lemma, it can be used to identify all critical points.

LEMMA 3.8. In the linear mixed model (11), for any v ∈ R
d1 ,

varθ
{
vᵀsi

λ(θ;Yi,Xi) | Xi

} ≥ 2ē(�i)
−2e

(
Z

ᵀ
i Zi

)2 max
j

(λjvj )
2

and

varθ
{
vᵀsi

λ(θ;Yi,Xi) | Xi

} ≤ 2rie(�i)
−2ē

(
Z

ᵀ
i Zi

)2 max
j

(λjvj )
2,

where ē(·) is the largest eigenvalue.

Together with Lemma 3.7, Lemma 3.8 ensures that, as long as Z
ᵀ
i Zi and E(X

ᵀ
i Xi) are

invertible, {ej , j : λj = 0} spans the null space of I i(θ). As observed following Proposi-
tion 3.3, this makes checking the assumptions in Section 2 easier. Similarly, an implication
is that, when implementing the proposed method, we can take kj (θ) = 2 when λj = 0 and
kj (θ) = 1 otherwise. We are ready for the first main result of the section.

Let ‖ · ‖ be the spectral norm when the argument is a matrix.

THEOREM 3.9. If lim supi→∞ ri < ∞ and there exists an M ∈ (0,∞) such that, for
every i = 1,2 . . . , M−1 ≤ e(Zᵀ

i Zi) ≤ ē(Zᵀ
i Zi) ≤ M , M−1 ≤ e{E(X

ᵀ
i Xi)} and E(‖Xi‖4+δ) ≤

M for some δ > 0; then Assumptions 1–5, and hence the conclusions of Theorems 2.1 and
2.4, hold in the linear mixed model (11).

PROOF OF THEOREM 3.9. We prove the theorem with nonstochastic Xi ; the calculations
for stochastic Xi are similar. Then, since E(‖Xi‖4+δ) = ‖Xi‖4+δ we may assume ē(Xᵀ

i Xi) ≤
M , upon increasing M as needed. Assumption 1 is satisfied since fθ (yi) is strictly positive
on R

ri for every θ ∈ �, with γi being Lebesgue measure. We verify Assumption 2 with δ > 0
and k = 2 at critical θ ′. Define ξ i(θ;yi,Xi) ∈ R

d by

ξ i
j (θ;yi,Xi) = tr

{
�−1

i H i
j − �−1

i (yi − Xiψ)(yi − Xiψ)ᵀ�−1
i H i

j

}
, j ≤ d1,
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and the remaining d2 elements equal to si
ψ(θ;yi,Xi). When λj > 0, ξ i

j (θ;yi,Xi) =
si
j (θ;Yi,Xi)/λj . Because ξ i

j (θ;yi,X) is continuous in θ since σ 2 > 0, when λj = 0 it holds

that ξ i
j (θ;yi,Xi) = ∇2

j �i(θ;yi,Xi). More generally, for j, l ≤ d1,

∇2
j l�

i(θ;yi,Xi) = I(j = l)ξ i
j (θ;yi,Xi) − λj tr

{
�−1

i H i
k�

−1
i H i

j

}
+ λj tr

{
�−1

i H i
k�

−1
i (yi − Xiψ)(yi − Xiψ)ᵀ�−1

i H i
j

}
+ λj tr

{
�−1(yi − Xiψ)(yi − Xiψ)ᵀ�−1

i H i
k�

−1
i H i

j

}
.

Since σ 2 > 0,we can pick for any θ ′ ∈ � a small enough open ball B ⊆R
d centered at θ ′ and

large enough M < ∞ to have, on B , that σ−2 ≤ M , ‖�−1
i ‖ ≤ M and λj ≤ M for all j . Thus,

using submultiplicativity of the spectral norm and that the trace is upper bounded by ri times
the spectral norm, on B ,∣∣∇2

j l�
i(θ;yi,Xi)

∣∣ ≤ ri
{
M

∥∥Hi
j

∥∥ + M2∥∥Hi
j

∥∥‖yi − Xiψ‖2} + riM
3∥∥Hi

l

∥∥∥∥Hi
j

∥∥
+ 2riM

4‖yi − Xiψ‖2∥∥Hi
j

∥∥∥∥Hi
l

∥∥.
Now, ‖Hi

j‖ ≤ ‖Zᵀ
i Zi‖ ≤ M and ‖yi − Xiψ‖ ≤ ‖yi‖ + ‖Xiψ‖ ≤ ‖yi‖ + M‖ψ‖ for all (i, j).

Thus, since ‖ψ‖ is bounded on B , the expectation in Assumption 2 to be bounded is, upon
increasing M as needed, less than

M{1 + sup
θ∈�∩B

Eθ

(‖Yi‖4+2δ),
which is bounded uniformly in i since Yi is a normal vector whose mean and covariance
matrix are bounded uniformly in i and θ ∈ B ∩ �. The calculations for k = 1 and j > d1 or
l > d1 are very similar, and hence omitted.

To verify Assumption 3, it suffices to find c1, c2 such that, for any v ∈R
d ,

c1(θ)vᵀI1(θ)v ≤ vᵀI i (θ)v ≤ c2(θ)vᵀI1(θ)v.

Let v = [vᵀ
1 , v

ᵀ
2 ]ᵀ with v1 ∈ R

d1 . By Lemmas 3.7 and 3.8, using that ri and the eigenvalues
of X

ᵀ
i Xi , Z

ᵀ
i Zi , and �−1

i are bounded, there exist M ∈ (0,∞) and c3, c4 : � → (0,∞) not
depending on i such that

M−1
{
‖v2‖ + c3(θ)max

j≤d1
(λjvj )

2
}

≤ vᵀI i(θ)v ≤ M
{
‖v2‖ + c4(θ)max

j≤d1
(λjvj )

2
}
.

Thus, the desired inequalities hold with c1(θ) = M−2{1+c4(θ)}−1 min{1, c3(θ)} and c2(θ) =
M2 min{1, c3(θ)}−1{1 + c4(θ)}.

To verify Assumption 4, we argue as in the proof of Proposition 3.3, with minor modifi-
cations to take the observation index into account. Thus, adding an observation index to the
vector s̄ defined in Proposition 3.3, and making the dependence on the predictors explicit, we
get that ξ i(θ;Yi,Xi) is equal to s̄i (θ;Yi,Xi) with each element corresponding to a λj > 0
scaled by 1/λj . Thus, the covariance matrix of ξ i(θ;Yi,Xi) is positive definite if and only if
that of s̄i (θ;Yi,Xi) is. With that, the verification of Assumption 4 follows as in the proof of
Proposition 3.3.

Assumption 5 holds because, for j = 1, . . . d1, λj = 0 is the only critical element in [0,∞),
and that completes the proof. �

Lastly, in this section we consider confidence regions for λ only. To that end, let

T λ
n

(
λ;ψ,Yn,Xn) =

{
n∑

i=1

si
λ(θ;Yi,Xi)

ᵀ
}
Iλ

n (θ)−1

{
n∑

i=1

si
λ(θ;Yi,Xi)

}
,



1824 K. O. EKVALL AND M. BOTTAI

where Iλ
n (θ) = covθ {sλ

n(θ;Yn,Xn)} is the leading d1 × d1 block of In(θ). For such regions
to be practically useful, or feasible, ψ has to be known or estimated. Our next result says
ψ can estimated by any square root n-consistent estimator without affecting the asymptotic
coverage probability; this result assumes identically distributed observations for simplicity.
To be more specific, let

Rλ
n(α) = {

λ : T λ
n

(
λ;ψ,Yn,Xn) ≤ qd1,1−α

}
and let R̂λ

n(α) be that confidence region with an estimator ψ̂ in place of ψ in Tn.

THEOREM 3.10. If the (Yi,Xi), i = 1,2, . . . , are identically distributed and the condi-
tions of Theorem 3.9 hold, the confidence region Rλ

n(α) satisfies, for any compact C ⊆ � and
α ∈ (0,1),

lim
n→∞ inf

θ∈C
Pθ

{
λ ∈ Rλ

n(α)
} = 1 − α;

and if in addition
√

n‖ψ̂n − ψn‖ = OP(1) under any convergent {θn = (λn,ψn)} ∈ �, then
the same holds for R̂λ

n(α).

In practice, the estimator ψ̂n can be, for example, the least squares estimator

ψ̂n =
(

n∑
i=1

X
ᵀ
i Xi

)−1 n∑
i=1

X
ᵀ
i Yi .

This estimator is square root-n consistent under convergent {θn} under weak conditions. More
specifically, it is multivariate normally distributed given (X1, . . . ,Xn) with mean ψn and
covariance matrix (

n∑
i=1

X
ᵀ
i Xi

)−1(
n∑

i=1

X
ᵀ
i �nXi

)(
n∑

i=1

X
ᵀ
i Xi

)−1

,

which tends to a matrix of zeros under weak conditions.

3.4. Practical considerations. In many mixed models, the likelihood does not admit an
analytical expression, which complicates implementing likelihood-based methods in prac-
tice. In particular, evaluating the log-likelihood, or its derivatives and their expectations, may
require the numerical evaluation or approximation of integrals. A detailed treatment of nu-
merical integration is outside the scope of the present article, but we briefly discuss two
possible practical issues: (i) the critical points and their corresponding critical vectors are
known, but the proposed test statistic does not admit a convenient expression at those points;
and (ii) it is difficult to establish which points are critical by analytical means. For clarity, we
discuss identically distributed observations and assume kj ≤ 2 suffices to satisfy Assump-
tion 4, which in our experience is often the case in practice; other settings can be handled
similarly.

Issue (i) can occur when, for example, Corollary 3.2 says a scale parameter λj = 0 is a
critical point with critical vector ej in a generalized linear mixed model. To compute our test
statistic at such points, it is useful to note that, with the s̄ defined in Proposition 3.3 and under
regularity conditions,

Tn

(
θ;Yn) = n−1

{
n∑

i=1

s̄(θ;Yi)

}
covθ

{
s̄(θ;Y1)

}−1

{
n∑

i=1

s̄(θ;Yi)

}
.
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Thus, the user needs to compute first and second order partial derivatives of the log-likelihood
and their covariance matrix. A routine calculation shows, under regularity conditions, the j th
element of s̄(θ, yi) is

1

fθ (yi)

∫
∇kj

j fθ (yi | w)ν(dw),(12)

where kj = 2 for θj = λj = 0 and kj = 1 otherwise. The derivative inside the integral can typ-
ically be computed analytically for any kj , and hence there are no fundamental computational
differences between kj = 1 and kj = 2. We illustrate these calculations in detail in an exam-
ple in the Supplementary Material (Ekvall and Bottai (2022)). Software packages for mixed
models typically approximate integrals like that in (12) with kj = 1 using Laplace approx-
imations, adaptive Gaussian quadrature or Monte Carlo (e.g., Bates et al. (2015), Knudson
et al. (2021)). The integrals with kj = 2 and those required to compute the covariance matrix
can be handled by similar methods. When the critical vectors are known but are not stan-
dard basis vectors, the computations are similar but with different linear combinations of the
derivatives.

By contrast, issue (ii) is not merely computational. If one cannot establish the existence or
lack of critical points, then one does not know whether the Fisher information is invertible,
and hence whether the theory motivating many other methods applies. This highlights a prac-
tical advantage of the proposed procedure: if the inversion of the Fisher information fails,
the user is effectively warned they are attempting inference at a previously unknown critical
point. Having identified a critical point, the critical vectors can be calculated numerically by
spectral decomposition of the Fisher information, and then one is essentially back to issue (i).

4. Numerical experiments. We examine finite sample properties of the proposed
method in a linear mixed model. The Supplementary Material (Ekvall and Bottai (2022))
contains similar simulations in a generalized linear mixed model for binary responses with
asymmetrically distributed random effects, and the results there are qualitatively similar.

Suppose that for i = 1, . . . n and j = 1, . . . , r ,

Yij = ψ1 + ψ2Xij + U1i + U2iXij + Eij ,(13)

where [U1i ,U2i]ᵀ ∼ N {0,diag(λ2
1, λ

2
2)}, independently for i = 1, . . . , n and independent of

E = [E1,1, . . . ,En,r ]ᵀ ∼ N (0, σ 2Inr). To conform with the previous section, we assume
σ 2 = 1 is known. Thus, the parameter set is � = {θ = (λ,ψ) ∈ [0,∞)2 × R

2}. We study
confidence regions for λ with ψ estimated, that is, a nuisance parameter. The Supplementary
Material (Ekvall and Bottai (2022)) contains simulations where ψ is known, and simulations
where σ is unknown and confidence regions are created for (λ, σ ) with ψ estimated. We
compare the proposed confidence region to those obtained by inverting the likelihood ratio
test statistic and the Wald test statistic standardized by expected information evaluated at the
(unconstrained) maximum likelihood estimates. Specifically,

T L
n

(
λ;yn) = 2

{
�n

(
θ̂ , yn) − �n

([λ, ψ̃]ᵀ, yn)}
,

where θ̂ ∈ arg maxθ∈� �n(θ;yn) and ψ̃ = ψ̃(λ) ∈ arg maxψ∈R2 �n([λ,ψ]ᵀ, yn); and

T W
n

(
λ;yn) = (λ̂ − λ)ᵀIλ

n (θ̂)(λ̂ − λ),

where Iλ
n (θ) is the 2 × 2 block of In(θ) corresponding to λ.

Our theory suggests the proposed confidence region may have good finite sample coverage
near critical points because the proposed test statistic has the same asymptotic distribution
under any sequence of parameters tending to a critical point as the sample size increases.
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FIG. 2. Monte Carlo estimates of coverage probabilities of confidence regions from inverting the modified score
(solid), likelihood ratio (dashed) and Wald (dotted) test statistics. The straight horizontal line indicates the nomi-
nal 0.95 coverage probability and vertical bars denote ±2 times Monte Carlo standard errors.

Conversely, we expect the coverage of the other confidence regions may depend on how
close to a critical point the true parameter is. To examine this, we consider true λ at different
distances from the origin:

λ1 = λ2 ∈ {
10−6,0.01,0.05,0.1,0.2,0.3,0.4,0.5

}
.

Because these λ correspond to interior points of the parameter set, a level 1 − α confidence
region covers λ if the test statistic at λ is smaller than the (1 − α)th quantile of the chi-
square distribution with two degrees of freedom. The use of that distribution is motivated by
classical asymptotic theory for T L

n (λ;Yn) and T W
n (λ;Yn), and by our theory for the proposed

test statistic. Different reference distributions should be used for the Wald and likelihood ratio
statistics at boundary points (Baey, Cournède and Kuhn (2019), Geyer (1994), Self and Liang
(1987)), while the proposed method uses the same reference distribution at every point of the
parameter set.

We performed a Monte Carlo experiment with 10,000 replications. We set ψ = 12 and,
for every (λ,ψ) considered, generated stochastic predictors as independent draws from a
uniform distribution on [−1,2]. Responses were then generated according to (13). The sam-
ple sizes were n ∈ {20,80} and r = 10. Code for reproducing the results is available at
https://github.com/koekvall/conf-crit-suppl.

Figure 2 summarizes the results. Notably, the proposed confidence region has near-
nominal estimated coverage probability in all considered settings. By contrast, the estimated
coverage probabilities for the likelihood ratio and Wald confidence regions are substantially
different from nominal for many settings. Moreover, their coverage is sometimes lower and
sometimes higher than nominal. That is, for those methods, the quality of the chi-square
distribution as a reference distribution depends on how close to the critical point the true pa-
rameter is. Simulations in the Supplementary Material (Ekvall and Bottai (2022)) indicate the
proposed method give near-nominal coverage probabilities also of critical points, including
ones at the boundary.

Figure 3 examines the agreement between sample quantiles of the three considered test
statistics and the theoretical quantiles of a chi-square distribution with two degrees of free-
dom. The first plot, corresponding to small but nonzero scale parameters, shows the agree-
ment is poor near critical points for the likelihood ratio and Wald test statistics. For the larger
scale parameters, agreement between sample and theoretical quantiles is decent for all three
test statistics.

https://github.com/koekvall/conf-crit-suppl
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FIG. 3. Quantile-quantile plots for modified score (circles), likelihood ratio (triangles) and Wald (plus signs)
test statistics. The theoretical quantiles are from the chi-square distribution with 2 degrees of freedom and the
sample quantiles from 10,000 Monte Carlo replications with (n, r) = (80,10).

For additional insight into test statistics’ behavior near critical points, Figure 4 shows
estimated rejection probabilities (size and power) for tests of the null hypothesis that λ1 =
λ2 = 10−6. The data generating settings are the same as those used for Figure 2. The power
curves are not directly comparable because, as was also shown in Figure 2, the different tests
have different sizes. Nevertheless, the power curves behave similarly as the true λ moves
away from the null hypothesis value. This indicates the differences in coverage observed in
Figure 2 is not in general due to how large the different confidence regions are.

We considered several configurations in addition to those reported, including both larger
and smaller values of n and λ, and the results were remarkably consistent. To compute the
proposed test statistic, we used the lmmstest R package written by the first author. To fit the
model and compute the likelihood ratio and Wald test statistics, we used the lme4 R package
(Bates et al. (2015)). The Supplementary Material (Ekvall and Bottai (2022)) includes times
for computing the test statistics in the simulations on which Figure 2 is based. The proposed
test statistic was about 3–4 times faster to evaluate than the likelihood ratio and Wald statistics

FIG. 4. Monte Carlo estimates of rejection probabilities for testing the null hypothesis λ = 10−612 using the
modified score (solid), likelihood ratio (dashed) and Wald (dotted) test. The straight horizontal line indicates the
size of the tests (0.05) and vertical bars denote ±2 times Monte Carlo standard errors.
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TABLE 1
Maximum likelihood estimates and 95% confidence intervals (CI) for scale parameters in the linear mixed model

(14)

Parameter Estimate Mod. Score CI Lik. Rat. CI Wald CI

λ1 (intercept) 0 (0,0.0482) (0,0.0604) (0,0.126)

λ2 (age) 0.0201 (0.0188,0.0219) (0.0183,0.0222) (0.0181,0.0222)

σ (error) 0.156 (0.152,0.162) (0.151,0.162) (0.151,0.162)

on average, but we expect both relative and absolute computing times to vary substantially
between settings and implementations.

We also note there is a Stata routine for calculation of the proposed confidence region
for a single variance parameter in linear mixed models with a random intercept (Bottai and
Orsini (2004)), a special case which can also be treated using exact finite sample methods
(Crainiceanu and Ruppert (2004)).

5. Data example. We illustrate using a data set presented by Fitzmaurice, Laird and
Ware (2011), which contains a subset of the pulmonary function data collected in the Six
Cities Study (Dockery et al. (1983)). The data include a pulmonary measure called the forced
expiratory volume in the first second (FEV1), height (ht) and age obtained from a randomly
selected subset of the female participants living in Topeka, Kansas. The sample includes n =
300 girls and young women, with a minimum of one and a maximum of twelve observations
over time. Age and height are believed to be associated with the ability to take in and force
out air. To model these data, consider the linear mixed model

(14) FEV1it = ψ1 + ψ2ageit + ψ3htit + ψ4agei1 + ψ5hti1 + Ui1 + Ui2ageit + Eit ,

where Ui1 ∼ N (0, λ2
1), Ui2 ∼ N (0, λ2

2), and Eit ∼ N (0, σ 2) are mutually independent for
all individuals indexed by i and time points indexed by t . This is a model considered by
Fitzmaurice, Laird and Ware (2011), modified slightly to fit our setting. The parameter set is
� = {θ = (ψ,λ,σ ) ∈ R

5 × [0,∞)2 × (0,∞)}.
The maximum likelihood estimate of ψ is ψ̂ = (−2.2,0.078,2.80,−0.040,−0.19), but

we focus on the scale parameters whose estimates are in Table 1. Notably, the maximum
likelihood estimate of λ1 is zero, indicating common confidence regions may be unreliable.
We present a confidence region for λ (Figure 5) and three componentwise confidence regions
(Table 1). When creating a confidence region for a subvector or component of θ , say λ1, the
other components are effectively nuisance parameters. Then, at noncritical points we stan-
dardize the score for λ1 by the Schur complement (efficient information) In/I−λ1

n , where
I−λ1

n is In with rows and columns corresponding to λ1 removed and evaluate at estimates
of the nuisance parameters (see, e.g., Fewster and Jupp (2013) or Bickel et al. (1998), Chap-
ter 2, for motivation). Similarly, at critical points we standardize the modified score for λ1 by
Ĩn/Ĩ−λ1

n ; we comment further on nuisance parameters in Section 6.
For context, we also present likelihood ratio intervals based on the profile likelihood com-

puted using the confint function in lme4, and Wald intervals based on maximum likeli-
hood estimates from lme4 and the expected Fisher information evaluated at estimates. These
use the chi-square distribution with one degree of freedom as reference. To decide whether to
include the boundary points λ1 = 0 and λ2 = 0 in the componentwise confidence intervals,
we note λ̂1 = 0 so 0 is in confidence intervals based on the profile likelihood or Wald statis-
tic for any reference distribution. Conversely, the test statistics for λ2 are so large at 0 that
0 should not be in either region for any relevant reference distribution. To validate this, we
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FIG. 5. Componentwise test statistics for λ1 (first plot) and λ2 (second plot), and joint 80–99% confidence
regions for λ (third plot), based on the chi-square distribution with two degrees of freedom. The dashed lines in
the first two plots mark the 0.95th quantile of a chi-square distribution with one degree of freedom. The dashed
lines in the third plot mark maximum likelihood estimates.

used the varTestnlme R package (Baey and Kuhn (2019)) to test, separately, λ2
1 = 0 and

λ2
2 = 0, and got the p-values 0.5 and 4 × 10−78, respectively.

The proposed interval for λ1 is substantially smaller than that based on the likelihood ratio
(Table 1). This is consistent with our simulations where the latter had greater than nominal
empirical coverage of small scale parameters. The Wald interval for λ1 is even wider than
the likelihood ratio-based interval. The proposed interval for λ2 is smaller than the other two,
and its left endpoint is further from zero. Thus, there are indications the proposed procedure
leads to not only reliable but more precise inference. The intervals for σ only differ in the
third significance digit. This is consistent with both theory and simulations since the estimate
of σ is further from zero than those of λ1 and λ2, and hence the different test statistics are
expected to behave similarly.

Figure 5 shows plots of the componentwise test statistics based on the proposed method
for a range of λ1 and λ2. The values of λ1 and λ2 such that the graph of the corresponding
test statistic is below the critical value 3.84 (the 0.95th quantile of the chi-square distribution
with one degree of freedom), give the confidence regions in Table 1. The graphs indicate the
test statistics are convex in λ1 and λ2, respectively. The proposed regions for λ (Figure 5,
third plot), which use the chi-square distribution with two degrees of freedom as reference
distribution, can be used to assess which values of λ are supported by the data. We may,
for example, reject the joint null hypothesis that λ1 = λ2 = 0 at conventional levels of sig-
nificance. To create these graphs and the corresponding confidence regions in Table 1, we
evaluated the test statistics at a grid of 50 values each for λ1 and λ2 and included in the
confidence regions those points where the test statistics were less than the desired quantile
of the reference distributions. Thus, for the first and second plot we evaluated component-
wise test statistics 50 times each, and for the third plot we evaluated the test statistic for λ

at 50 × 50 = 2500 points. The coarseness of the grid can be adjusted depending on desired
accuracy and computing times.

6. Final remarks. Linking the boundary problem to the singular information problem
allows a deeper understanding of the behavior of the likelihood function in shrinking neigh-
borhoods of the boundary of a parameter set. Perhaps more importantly, it permits the con-
struction of confidence regions that have asymptotically correct uniform coverage probability.

The advantages of using the proposed modified score test in constructing confidence re-
gions are many-fold: the proposed procedure does not in general require a consistent point
estimator, which can be troublesome when the parameter is at or near the boundary; it does
not in general rely on simulation algorithms, which typically need to be programmed for the
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specific problem at hand; it can be applied to a broad variety of models, including the lin-
ear mixed model; it allows inference on scale parameters when the random effects follow an
asymmetric distribution, which gives insight about the sign and the magnitude of the skew-
ness. In addition, to the best of our knowledge, the asymptotic behavior under a sequence of
parameters of the Wald and likelihood ratio test statistics for a scale parameter, has not been
described for settings in which the Fisher information has any rank less than full.

Our work suggests several avenues for future research: First, more theory is needed on
settings with nuisance parameters not orthogonal to the parameters of interest. Existing the-
ory suggests replacing the Fisher information by the efficient Fisher information as we did in
Section 5, but this has not been formalized for inference near critical points. Based on simu-
lations (Supplementary Material, Ekvall and Bottai (2022)) and intuition, we conjecture our
results may be adapted to settings where the block of the Fisher information corresponding
to the nuisance parameters is not nearly singular, but that there may be additional challenges
otherwise. Second, in some mixed models, for example, with crossed random effects, there
are few independent observations even as the total number of observations grows. Then a
different asymptotic theory may be of interest. There are results on the consistency of maxi-
mum likelihood estimators in such settings (Ekvall and Jones (2020), Jiang (2013)), but the
properties of test statistics are largely unknown. Third, efficient software implementations
of the proposed method for popular mixed models are needed: creating the proposed confi-
dence region in practice often requires inverting the test statistic numerically, which can be
computationally expensive. This is in contrast to the Wald statistic, which can be inverted
analytically, but similar to the likelihood ratio statistic, which in general requires numeri-
cal inversion. A natural starting point when implementing a numerical procedure would be
to consider a grid of parameter values centered at some reasonable estimates. For example,
even in nonlinear mixed models where maximum likelihood estimation can be computation-
ally expensive, fast approximate maximum likelihood estimates and Wald confidence regions
are often available through penalized quasi-likelihood or Laplace approximation of the like-
lihood. Some further remarks on computing are in the Supplementary Material (Ekvall and
Bottai (2022)).
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SUPPLEMENTARY MATERIAL

Supplement to “Confidence regions near singular information and boundary points
with applications to mixed models” (DOI: 10.1214/22-AOS2177SUPP; .pdf). The supple-
mental material contains proofs and additional details and results.
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