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This note contains additional results and technical details for the article “Concave likelihood-

based regression with finite-support response variables”. For brevity, that article is referred

to as “the main text” in what follows.

Web Appendix A

A.1 Depression screening questionnaire data example

We consider the patient health questionnaire (Kroenke and Spitzer, 2002) of the National

Health and Nutrition Examination Survey (NHANES). Briefly, patients answer 9 questions

on depression symptoms, scoring each question 0, 1, 2, or 3. The outcome of interest here is

the cumulative score, taking values in {0, 1, . . . , 27}, which is often used as a screening tool;

higher scores correspond to a stronger indication of depression.

It is common to model data like these using linear models, effectively ignoring the discrete

and bounded nature of the response. Here we instead consider a model consistent with

the observed data. To illustrate, suppose we are interested in whether there is a difference

between male and female patients and whether age has an effect on the outcome. Inspecting

a histogram of the cumulative scores (Web Figure A), we note an indication the outcome is
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right-skewed with substantial mass at low scores. Based on this we consider a model which

says the score Yi for the ith patient has mass function

fθ(yi) = exp[−{yi exp(−xT
i β/σ)}σ]− exp[−{(yi + 1) exp(−xT

i β/σ)}σ],

with yi + 1 replaced by ∞ if yi = 27. The parameter is θ = [σ,βT]T and xi ∈ R3 is a vector

with a one in the first element (an intercept), age in the second, and an indicator for male

in the third. This mass function corresponds to interval-censoring of a latent variable with

Weibull distribution, which specializes to the exponential distribution with mean exp(xTβ) if

the scale parameter σ = 1.
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Web Figure A: Histogram of cumulative scores

There are 171 complete observations included in the analysis, 79 males and 92 females.

The median age is 19 years. Web Table A shows results from fitting the model. The reported

standard errors are square roots of diagonal entries of the inverse of the observed Fisher

information matrix. The p-values are based on a normal approximation and are for the

null hypotheses that the scale is one and the regression coefficients are zero. The output

indicates male is an important predictor, with males on average scoring lower. We note

the scale parameter is significantly different from one, so the exponential distribution is not

appropriate in this case.
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Web Table A: Interval-censored Weibull regression
Scale Intercept Age Male

Est. 0.74 0.29 0.083 -0.31
S.E. 0.042 1.9 0.098 0.11

p-value < 10−9 0.88 0.40 0.0055

Web Figure B shows the estimated mass functions, separately for males and females and

with age held fixed at its sample median of 19. The estimated probabilities indicate both

males and females are most likely to score roughly in the range 1–5. However, the estimated

probabilities for males are higher than those for females for scores 0–4, while for scores 5–27

they are lower than those for females.
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Web Figure B: Estimated probabilities for cumulative scores at age 19

A.2 Diabetes data example

The R package glmnetcr (Archer and Williams, 2012) provides a microarray dataset on

n = 24 males, each of which were classified as normal control (Yi = 1), having impaired

fasting glucose (Yi = 2), or having Type II diabetes (Yi = 3). The predictors comprise 11,067

gene expression measurements, standardized to have sample mean zero and sample variance

one, and interest is in which of these are important for modeling or predicting the response.
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With R the standard normal cumulative distribution function, we consider the model

fθ(yi) =


R(α1 + xT

i β) yi = 1

R(α2 + xT
i β)−R(α1 + xT

i β) yi = 2

1−R(α2 + xT
i β) yi = 3,

which is a version of the cumulative probability model in Example 1 in the main text with

added predictors. In other words, it is an ordinal probit regression model. The parameter is

θ = [αT,βT]T ∈ Θ = {θ ∈ R11070 : θ1 ≤ θ2}. Consider the estimator

θ̂λ
n ∈ argmin

θ∈Θ
{−n−1ℓn(θ;Y ,X) + λ∥β∥1}.

We select λ using ten-fold cross-validation from the set {20, . . . , 2−10} and find that λ = 2−7

gives the lowest mis-classification rate, 0.067. At this λ there are 17 non-zero coefficients. By

far the largest coefficient is that of the predictor ILMN 1759232, which corresponds to Insulin

receptor substrate 1; this agrees with previous findings (Archer and Williams, 2012). Web

Figure C shows a trace plot for the coefficients.

Fitting the model once for every λ in the given sequence took approximately 4 seconds

on a MacBook Pro with a 2.6 GHz 6-core Intel Core i7 processor, and running the 10-fold

cross-validation took approximately 40 seconds.

A.3 Breast cancer data example

Web Figure D shows a trace plot referenced in the main text.

Web Appendix B

Define D : {t = (t1, t2) ∈ [−∞,∞]2} : t1 ≤ t2} → [0, 1] by D(t) =
∫ t2
t1

r(w) dw. For interior

points of the domain, let g(t) = ∇ log{D(t)} and H(t) = ∇2 log{D(t)}. Define also the
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Web Figure C: Trace plot for diabetes data example. The vertical line indicates the selected
log(λ) = −7 log(2) ≈ −4.85.

first element of g(t), and the first row and column of H(t), to vanish when t1 is infinite.

Similarly, the second element of g(t) and second row and column of H(t) vanish when t2 is

infinite. Finally, when t1 = t2, g(t) = 0 and H(t) = 0. Thus, g and H are defined on the

same domain as D.

When the log-likelihood is differentiable, its gradient is

∇ℓn(θ;Y ,X) =
n∑

i=1

ZT
i g(ai(yi,xi,θ), bi(yi,xi,θ)).

When the log-likelihood is twice differentiable, its Hessian is

n∑
i=1

ZT
i H(ai(yi,xi,θ), bi(yi,xi,θ))Zi.

We overload notation and often simplify H(ai(yi,xi,θ), bi(yi,xi,θ)) to H(yi,xi,θ) or, when

the arguments are clear from context, Hi.
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Web Figure D: Trace plot for gene expression coefficients. The vertical line indicates the
selected log(λ) = −5.

B.1 Concavity of the log-likelihood

Lemma B.1. For any log-concave Lebesgue density r on R the function D is log-concave.

Moreover, if r is strictly positive and strictly log-concave on an interval (a, b), −∞ ≤ a <

b ≤ ∞, then D is strictly log-concave on {t ∈ R2 : a < t1 < t2 < b}.

Remark. The first assertion of the lemma implies the cumulative distribution function R and

the survival function 1−R are both log-concave. The second assertion implies t1 7→ D(t1, t2)

is strictly log-concave on (a, t2) and t2 7→ D(t1, t2) is strictly log-concave on (t1, b).

Proof. The first assertion follows from (i) the maps (t1, t2, w) 7→ I(t1 ≤ w ≤ t2) and

(t1, t2, w) 7→ r(w) are log-concave, (ii) the product of log-concave functions is log-concave,

and (iii) integrating out one variable from a log-concave function on R3 gives a log-concave

function on R2 (Prékopa, 1973, Theorem 6).

To prove the strict log-concavity we will use Theorem 4 of Prékopa (1973) in a way similar

to the proof of their Theorem 5. Denote T = {t ∈ R2 : a < t1 < t2 < b}, where a < b and r

is strictly positive and strictly log-concave on (a, b). Note T non-empty, convex, and open.

Pick u, v ∈ T , u ̸= v. If u1 ̸= v1, define the intervals U = [u1, u2) and V = [v1, v2). Define
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also U1 = [u1, u1 + ϵ] and V1 = [v1, v1 + δ], where ϵ > 0 and δ > 0 are small enough that

U2 = U \ U1 and V2 = V \ V1 are non-empty.

We will omit the arguments for the case u1 = v1, u2 ≠ v2 since they are very similar but

with the definitions U = (u1, u2], V = (v1, v2], U1 = [u2 − ϵ, u2], and V1 = [v2 − δ, v2].

Now, with R denoting the distribution with cumulative distribution function R, we have

D(u) = R(U), D(v) = R(V ), and

D(su+ (1− s)v) = R(sU + (1− s)V ),

where for sets addition is in the Minkowski sense and scalar multiplication is elementwise.

Thus, we need to show R(sU + (1 − s)V ) > R(U)sR(V )1−s. By construction, U1 and U2

are convex and partition U , U1 is closed and bounded, and both U1 and U2 have positive

R-measure. Similar statements apply to V1, V2, and V . This verifies condition a) and Equation

(3.5) of Theorem 4 by Prékopa (1973). Condition d) holds because the convex hull of U1 ∪ V1

is a closed interval contained in (a, b). It remains to verify their condition (b) and Equation

(3.6).

Observe

sU1 + (1− s)V1 = [su1, s(u1 + ϵ)] + [(1− s)v1, (1− s)(v1 + δ)]

= [su1 + (1− s)v1, su1 + (1− s)v1 + sϵ+ (1− s)δ]

and

sU2 + (1− s)V2 = (s(u1 + ϵ), su2) + ((1− s)(v1 + δ), (1− s)v2)

= (su1 + (1− s)v1 + sϵ+ (1− s)δ, su2 + (1− s)v2).

Thus, Equations (3.1) and (3.2) in Prékopa (1973) hold by inspection. To ensure their

Equations (3.3) and 3.4 also hold, note that as ϵ, δ → 0, sU1 + (1− s)V1 shrinks towards the
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point su1 + (1− s)v1 and U1 shrinks towards the point u1. Thus, they are disjoint for small

enough ϵ and δ because u1 ̸= v1 and s ∈ (0, 1). Similarly, V1 and sU1 + (1− s)V1 are disjoint

for small enough ϵ and δ and that verifies Equations (3.3) and (3.4). As argued in the proof of

Theorem 5 in Prékopa (1973), their Equation (3.6), which says R(U2)/R(U1) = R(V2)/R(V1),

can be made to hold because the left-hand side does not depend on δ and tends to infinity

as ϵ → 0, and the right-hand side does not depend on ϵ and tents to infinity as δ → 0. We

conclude all the sufficient conditions hold, and hence R(sU + (1− s)V ) > R(U)sR(V )1−s as

desired.

Proof of Theorem 1. The non-strict concavity follows from the non-strict log-concavity given

by Lemma B.1 and the fact that the composition of a concave and an affine function is

concave. To prove the strict part, note continuous differentiability of r implies ∇2ℓn(θ;Y ,X)

exists on every interior point of Θ. Thus, it suffices to prove ∇2ℓn(θ;Y ,X) is negative

definite (Boyd and Vandenberghe, 2004, p.71). Recall the Hessian is

∇2ℓn(θ;Y ,X) =
n∑

i=1

ZT
i HiZi.

Now, when ma
i and mb

i are both finite, Hi is negative definite by Lemma B.1. For yi such

that ma
i = −∞, we have that za

i = 0 and hence

ZT
i HiZi = H22(yi,xi,θ)Z

T
i Zi.

Similarly, for yi such that mb
i = ∞ we have

ZT
i HiZi = H11(yi,xi,θ)Z

T
i Zi.

By Lemma B.1, H11 and H22 are strictly negative. Thus, we can find an ϵ = ϵ(Y ,X,θ) > 0
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such that

λmax

(
n∑

i=1

ZT
i HiZi

)
< ϵλmax

(
n∑

i=1

ZT
i Zi

)
< 0,

which completes the proof.

B.2 Asymptotics with fixed number of parameters

Lemma B.2. If r is continuously differentiable, Assumption 1 holds, and ∥θ∗∥1 ≤ c1, then

for all small enough ρ > 0 there exists an ϵ > 0 such that for all i ∈ N, x ∈ X , and θ with

∥θ − θ∗∥1 ≤ ρ:

1. H11(yi,x,θ) ≤ −ϵ if ai(yi,x,θ) > −∞ and bi(yi,x,θ) = ∞;

2. H22(yi,x,θ) ≤ −ϵ if ai(yi,x,θ) = −∞ and bi(yi,x,θ) < ∞; and

3. λmax {H(yi,x,θ)} ≤ −ϵ if ai(yi,x,θ) > −∞ and bi(yi,x,θ) < ∞

Proof. Continuous differentiability of r implies H(t1, t2) is continuous on {t : t1 < t2},

t1 7→ H11(t1,∞) is continuous on R, and t2 7→ H22(−∞, t2) is continuous on R. Lemma B.1

says the functions are also strictly negative on the given domains. Consider first yi such that

bi(yi,x,θ) = ∞.

|θTza
i +ma

i | ≤ |(θ − θ∗)
Tza

i +ma
i |+ |θT

∗ z
a
i |

≤ (1 + ρ)c2 + c1c2 =: c3,

where the constant c2 is given by Assumption 1. Now point 1 in the conclusion follows from

that t1 7→ H11(t1,∞) is continuous and strictly negative on the compact [−c3, c3], and hence

attains a strictly negative maximum there. We omit the arguments for the other cases since

they are very similar, using for the case where neither endpoint is infinite that Ziθ+mi is, by

Assumption 1, contained in a compact set on which λmax{H(t1, t2)} is strictly negative.
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Lemma B.3 (Bartlett identities). If, in Model (1) in the main text, the density r is strictly

positive and continuous and ∥Z(y,x)∥ < ∞ for all (y,x), then Eθ{∇ℓ(θ;Y,x)} = 0 and

−Eθ{∇2ℓ(θ;Y, ]x)} = covθ{∇ℓ(θ;Y,x)} for every x and θ.

Proof. By a classical argument, it suffices to show we can differentiate twice under the integral

in the identity
∫
fθ(y | x) dy, where dy indicates integration with respect to the measure

against which Y has density fθ(y | x). We show it can be done once by showing that for

every ∥∇fθ(y | x)∥1 is bounded by an integrable function of y not depending on θ (Folland,

2007, Theorem 2.27). In fact, we have

∥∇fθ(y | x)∥1 = ∥r(b(y,x,θ))zb − r(a(θ, y,x))za∥1

≤ |r(b(y,x,θ))|∥zb∥1 + |r(a(θ, y,x))|∥za∥1

≤ c1,

where c1 < ∞ depends on neither of y, x, or θ; and za and zb are vectors of zeros if,

respectively, a(y,x,θ) = −∞ or b(y,x,θ) = ∞. This claim follows since Z is bounded and

r is bounded. Indeed, since r is continuous, positive, integrates to one on R, and is zero at

the infinities, it is bounded on [−∞,∞]. We omit the arguments for second-order derivatives

since they are very similar.

Lemma B.4. If, in Model (2) in the main text, the density r is strictly positive and

continuously differentiable, θ∗ is an interior point, and, for every t ∈ Rd, as n → ∞,

1

n

n∑
i=1

E
[∫ 1

0

{∇2ℓi(θ∗ + st/
√
n;Yi,xi)−∇2ℓi(θ∗;Yi,xi)}s ds

]
→ 0, (1)

1

n2

n∑
i=1

var

{∫ 1

0

tT∇2ℓi(θ∗ + st/
√
n;Yi,xi)ts ds

}
→ 0, (2)

and

1

n

n∑
i=1

cov{∇ℓi(θ∗;Yi,xi)} = n−1In(θ∗;X) → I(θ∗) (3)
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for some positive definite I(θ∗); then

√
n(θ̂n − θ∗) = I(θ∗)

−1n−1/2

n∑
i=1

∇ℓi(θ∗;Yi,xi) + oP(1).

Proof. We verify the conditions of Theorem 2.2 in Hjort and Pollard (2011) from which the

conclusion follows. Define the remainder Di in a linear approximation of ℓ around the true

parameter θ∗ by

Di = Di(Yi,xi, t) = ℓi(θ∗ + t;Yi,xi)− ℓi(θ∗;Yi,xi)−∇ℓi(θ∗;Yi,xi)
Tt.

The likelihood has continuous second order partial derivatives in some open ball around the

interior θ∗ because r is continuously differentiable, and hence we can use the mean value

theorem with integral-form remainder to write, for all small enough t,

Di = tT
[∫ 1

0

∇2ℓi(θ∗ + st;Yi,xi)s ds

]
t.

Now straightforward algebra shows (1) and (2) are equivalent to, respectively,
∑n

i=1 vi,0(t/
√
n) →

0, where vi,0(t) = E(Di) − tTE{∇2ℓi(θ∗;Yi,xi)}t, and
∑n

i=1 vi(t/
√
n) → 0, where vi(t) =

var(Di).

Remark. By specializing the remarks following Theorem 2.2 in Hjort and Pollard (2011) to

the present setting one sees that condition (3) can be weakened to

0 < lim inf
n→∞

n−1λmin{In(θ∗;X)} ≤ lim sup
n→∞

n−1λmax{In(θ∗;X)} < ∞,

in which case the conclusion is

In(θ∗;X)1/2(θ̂ − θ∗) = In(θ∗;X)−1/2∇ℓn(θ∗;Y ,X) + oP(1).
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Lemma B.5. If r is continuously differentiable and Assumption 1 holds, then the family of

Hessians

{∇2ℓi(·; yi,xi) : i ∈ N, yi ∈ Yi,xi ∈ X}

is equicontinuous at interior θ∗; that is, for every ϵ > 0 there is a δ = δϵ > 0 such that, for

every i ∈ N, yi ∈ Yi, xi ∈ X , and θ with ∥θ − θ∗∥ ≤ δ,

∥∇2ℓi(θ; yi,xi)−∇2ℓi(θ∗; yi,xi)∥ ≤ ϵ.

Proof. Let ϵ > 0 be given and consider θ ∈ Bδ(θ∗), the open ball of radius δ > 0 centered at

θ∗. Upon decreasing δ if necessary we may assume all points in Bδ(θ∗) are interior points of

Θ, so the Hessians exist on the ball.

Using that the spectral norm is sub-multiplicative, we get

∥∇2ℓi(θ; yi,xi)−∇2ℓi(θ∗; yi,xi)∥ ≤ ∥Zi∥∥H(yi,xi,θ)−H(yi,xi,θ∗)∥.

Since d is fixed, Assumption 1 gives ∥Zi∥ ≤
√
d∥Zi∥∞ ≤ c1. Consider yi such that

ma
i (yi,xi) and mb

i(yi,xi) are both finite and note H(t1, t2) is, since r is continuously dif-

ferentiable, uniformly continuous on the compact set given by Assumption 1. Thus, we

have ∥H(yi,xi,θ)−H(yi,x,θ∗)∥ ≤ ϵ/c1 uniformly in xi and θ ∈ Bδ(θ∗) by picking δ small

enough. Similar arguments apply to yi where one of the endpoints are inifinite, so the

conclusion is true for every yi. Thus, since Y is finite, it also holds uniformly in yi and that

completes the proof.

Proof of Theorem 2. We start by verifying (1)–(2) in Lemma B.4. The former follows from

Lemma B.5 which gives that for any ϵ > 0, it holds for all large enough n that

∥∇2ℓi(θ∗ + st/
√
n;Yi,xi)−∇2ℓi(θ∗;Yi,xi)∥ ≤ ϵ
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for all i ∈ N, Yi ∈ Yi, and xi ∈ X . Thus, the left-hand side in (1) is less than ϵ for all large

enough n, and hence so is its upper limit.

Now, using again the fact that the linear predictors, when they are finite, are contained

in compact sets, ∥∇2ℓi(θ;Yi,xi)∥ is bounded uniformly in i ∈ {1, 2, . . . }, Yi ∈ Yi, xi ∈ X ,

and θ ∈ Bδ(θ
∗), for small enough δ > 0. Thus, there is a c1 < ∞ such that

var

{∫ 1

0

tT∇2ℓi(θ∗ + st/
√
n;Yi,xi)ts ds

}
≤ c1

for all large enough n, and hence (2) holds. From this it also follows that the eigenvalues

of n−1In(θ;X) = −n−1
∑n

i=1 E{∇2ℓi(θ∗;Yi,xi)} are bounded. Thus, by remarks following

Lemma B.4, we are done if we can establish a lower bound on the eigenvalues of n−1In(θ;X)

and verify that

In(θ∗;X)−1/2ℓn(θ∗;Y ,X)⇝ N (0, Id).

This is straightforwardly done in two steps: first, for any t ∈ Rd

n∑
i=1

tT∇ℓi(θ∗;Yi,xi)/
√

tTIn(θ∗;Yi,xi)t⇝ N (0, 1)

by Lyapunov’s central limit theorem, using that the elements of ∇ℓi(θ∗;Yi,xi) are uni-

formly bounded and hence have uniformly bounded third (say) moment. Then, the con-

clusion follows from the Cramér-Wold theorem if 0 < lim infn→∞ n−1λmin{In(θ∗;X)} ≤

lim supn→∞ n−1λmax{In(θ∗;X)} < ∞ (Biscio et al., 2018). We have already established

the upper bound, so it only remains to show the lower bound holds. But Lemma B.2

implies λmax{∇2ℓn(θ∗;Y ,X)} ≤ −ϵ
∑n

i=1Z
T
i Zi for some ϵ > 0. The lower bound follows by

observing In(θ∗;X) = −E{∇2ℓn(θ∗;Y ,X)}, and that completes proof.

Proof of Corollary 1. Let us first prove that Assumption 1 is satisfied, starting with the first

13



part. Recall that in the model in Example 2, when σ = 1 is known,

Zi = −[xi,xi]
T; mi = [tij, t

i
j+1]

T,

with the first or second row of Zi replaced by zeros if, respectively, tij = −∞ or tij+1 = ∞.

Because Y is finite, there is an ϵ > 0 such that tij ≤ tij+1 + ϵ for all i and j. Thus, for any

fixed yi with finite endpoints, the image of the map (xi,β) 7→ Ziβ + mi is contained in

the set T = {t ∈ R2 : t1 ≤ t2 + ϵ}. Moreover, that map is continuous and hence maps the

compact set {xi : ∥xi∥∞ ≤ c1} × {β ∈ Rp : ∥β − β∗∥1 ≤ ρ} to a compact set, say Ei ⊆ T .

Because Y is finite, there finitely many Ei, so their union is a compact subset of T , which

shows the first part of Assumption 1 holds. The second part is immediate from ∥xi∥∞ ≤ c1

and Y being finite.

The proof is completed by observing, since Zi = −[xi,xi]
T, we have E(ZT

i Zi) = ZT
i Zi =

2xxT
i , and lim infn→∞ λmin

{∑n
i=1 E(ZT

i Zi)/n
}
> 0 if and only if lim infn→∞ λmin{XTX/n} >

0.

Theorem B.6. Under the conditions of Theorem 2 in the main text, if in addition r is twice

continuously differentiable, then as n → ∞,

∥∥∥−n−1∇2ℓn(θ̂n;Y ,X)− n−1In(θ;X)
∥∥∥→ 0

in probability, and hence

{
−∇2ℓn(θ̂n;Y ,X)

}1/2

(θ̂n − θ∗)⇝ N (0, Id).

Proof. The convergence in distribution follows from Theorem 2.2 and Slutsky’s theorem once

the convergence in probability is established. To do this, it suffices because θ̂n is consistent
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to show, in probability,

sup
θ∈B

∥∥−n−1∇2ℓn(θ;Y ,X)− n−1In(θ∗)
∥∥→ 0

where B = {θ ∈ Rd : ∥θ − θ∗∥1 ≤ ρ} and ρ is chosen small enough that B ⊆ Θ and to

satisfy Assumption 1. To get this we verify the conditions of Theorem 8.2 by Pollard (1990).

Pick an arbitrary element of ∇2ℓi(θ;Yi,xi) and, to simplify notation, denote it fi(Yi,θ). By

arguments in the proof of Theorem 2, fi(Yi,θ) is bounded by some c1 < ∞, uniformly in

i ∈ N, Yi ∈ Yi and θ ∈ B. Thus, in Pollard’s notation, we have the envelope Fi = c1, so his

condition (i) holds. Also, if Fn is the vector with elements Fi, ∥Fn∥1 = nc1. Now, since r is

twice continuously differentiable, derivatives of fi with respect to θ are continuous. Thus,

by arguments essentially the same as those in the proof of Theorem 2, upon increasing c1

if necessary, we have ∥∇θfi(Yi,θ)∥∞ ≤ c1. We will use this to, as required by Pollard’s

condition (ii), bound the L1-packing number for balls of radius ϵ∥Fn∥1 = ϵnc1 of the set

Fn(Y ) = {fn(Y ,θ) = [f1(Y1,θ), . . . , f1(Y1,θ)]
T : θ ∈ B} ⊆ Rn.

If θ1 and θ2 are two points in B, then for some θ̃ between them,

∥fn(Y ,θ1)− fn(Y ,θ1)∥1 =
n∑

i=1

|fi(Yi,θ1)− fi(Yi,θ2)|

=
n∑

i=1

|∇θfi(Yi, θ̃)
T(θ1 − θ2)|

≤ nc1∥θ1 − θ2∥1,

where the second line is by Taylor’s theorem with Lagrange-form remainder, and the last

line uses that the gradient is bounded by c1 on B. Thus, an ϵ-cover of B translates to an

nc1ϵ-cover of Fn(Y ). But the ϵ-covering number of B is less than (ρ+ 2ρ/ϵ)d (Wainwright,

2019, Example 5.8), and hence the nc1ϵ-packing number of Fn(Y ) is less than (ρ+ 4ρ/ϵ)d
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(Wainwright, 2019, Lemma 5.5). Since log{(ρ + 4ρ/ϵ)d} = o(n) we have verified Pollard’s

condition (ii), and that completes the proof.

B.3 Asymptotics with diverging number of parameters

We will use the framework of Negahban et al. (2012) to prove Theorem 4.1. To that end we

establish a concentration inequality for the gradient of the objective function and a restricted

strong convexity.

Lemma B.7. If r is continuous and strictly positive on R and Assumption 1 holds, then

there exists a c1 such that, for any t ≥ 0,

P (∥∇Gn(θ∗;Y ,X)∥∞ > t) ≤ 2d exp
(
−c1nt

2
)

Proof. The gradient at θ∗ exists and is continuous since r is continuous. Thus, using that

the linear predictors are contained in compact sets when they are finite (Assumption 1), the

summands in ∇Gn(θ∗;Y ,X) = −n−1
∑n

i=1∇ℓi(θ∗, Yi,xi) are uniformly bounded by some

c2 < ∞ by the arguments in the proof of Theorem 2 (there applied to the Hessian). We

then get by Hoeffding’s inequality, using that the gradient has mean zero by Lemma B.3, for

j ∈ {1, . . . , d},

P (|[∇Gn(θ∗;Y ,X)]j| > t) ≤ 2 exp

(
−2nt2

c22

)
.

Thus, by a union bound (sub-additivity of measures),

P (∥∇Gn(θ∗;Y ,X)∥∞ > t) ≤ 2d exp

(
−2nt2

c22

)
,

which finishes the proof.

Lemma B.8. Let B̄M denote the closed ball of radius M centered at the origin in Rd. If

θ∗ is s-sparse and ∥θ∗∥∞ ≤ c1, then for small enough M > 0, there exists a κM > 0 not

depending on n or p such that, for ∆ ∈ C(S) ∩ B̄M and realizations (Y ,X) in the event
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Cκ,n,p in Theorem 4.1,

Gn(θ∗ +∆;Y ,X)−Gn(θ∗;Y ,X)−∇Gn(θ∗;Y ,X)T∆ ≥ κM∥∆∥2.

Proof. Continuity of the derivative of r ensures ∇2Gn(·;Y ,X) is continuous, and hence, by

the mean-value theorem, the left-hand side in the inequality to be established is equal to

∆T∇2Gn(θ∗ + ∆̃;Y ,X)∆/2

for some ∆̃ on the line connecting 0 and ∆. Let θ̃ = θ∗ + ∆̃. It now suffices to show

that H11(yi,xi, θ̃), H22(yi,xi, θ̃), and λmin{H(yi,xi, θ̃)} are bounded away from zero when,

respectively, bi(yi,xi, θ̃) = ∞, ai(yi,xi, θ̃) = −∞, and both are finite. But this is follows

from Lemma B.2 since ∥θ̃ − θ∗∥1 = ∥∆̃∥1 ≤ ∥∆∥1 ≤ 4∥∆S∥1 ≤ sM , and we can pick M

small enough that Assumption 1 holds with ρ = sM .

Before giving a proof of Theorem 3 we recall Corollary 1 of Negahban et al. (2012) and

specialize it to our setting in the following lemma.

Lemma B.9. If λn > 2∥∇Gn(θ∗)∥∞ and conditions (a)–(d) of Theorem 3 hold, then there

exists c1, c2 < ∞ such that for large enough n, d, and every outcome in the set Cκ,n,d,

∥θ̂λ
n − θ∗∥ ≤ c1λ

2
n and ∥θ̂λ

n − θ∗∥1 ≤ c2λn.

Proof. Condition (G1) in (Negahban et al., 2012) is satisfied because ∥·∥1 is a norm. Theorem

1 and Lemma B.8 show their condition (G2) is satisfied on any compact ball centered at the

origin, which is sufficient (Negahban et al., 2012, p. 9). More specifically, pick an M ∈ (0,∞)

and note that for any ∆ ∈ C(S) ∩BM it holds that (Negahban et al., 2012, Supplementary

Material, p.29)

Gλ
n(θ∗ +∆) ≥ Gλ

n(θ∗) + κM∥∆∥2 − 3
√
sλn∥∆∥/2.

Thus for all large enough n and d and ∆ ∈ C(S)∩{∥∆∥ = M}, since λn = o(1), Gλ
n(θ∗+∆) >

Gλ
n(θ∗). Hence, by convexity, ∥θ̂λ

n − θ∗∥ ≤ M . Because ∥θ∗∥ is bounded as d varies, this
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shows θ̂λ
n is in a compact ball of fixed radius for all large enough n and d. The proof of

Theorem 1 in Negahban et al. (2012) now applies almost verbatim, with the “global” κL

(their notation) replaced by the κM given by Lemma B.8.

Proof of Theorem 3. By Lemma B.7 we can pick λ2
n = c2 log(d)/n and have that the prob-

ability of the event An,d = {(Y ,X) : ∥∇Gn(θ∗;Y ,X)∥∞ > 2λn} is upper bounded by

2 exp{−c6nλn + log(d)} for all n and d and some c6 > 0. Thus, by picking large enough c2 we

get that An,d happens with probability at most d−c3 for some c3 > 0. Thus, the result follows

from Lemma B.9 and noting that P(Cκ,n,d∩Ac
n,d) = P(Cκ,n,d)−P(Cκ,n,d∩An,d) ≥ P(Cκ,n,d)−d−c3 ,

and that completes the proof.

B.4 Convergence of algorithm

Proof of Theorem 4. We check the conditions of Theorem 2 by Byrd et al. (2016). The

termination criteria ensure the descent property Gλ
n(θ

k) ≥ Gλ
n(θ

k+1) (Byrd et al., 2016,

p.5). Moreover, under either of conditions (a) and (b) Gλ
n is strictly convex by Theorem

2.1. Thus, for any starting value θ0, the sequence of iterates are contained in a large enough

compact ball B centered at θ̂, which under condition (b) exists because Gλ
n is strongly

convex. We have by continuity and strict convexity that supθ∈B ∥∇Gn(θ) + λ2θ∥ < ∞,

infθ∈B λmin{∇2Gn(θ) + λ2Id} > 0, and supθ∈B λmax{∇2Gn(θ) + λ2Id} < ∞. The bound

on the gradient implies the required Lipschitz-continuity and the eigenvalue bounds imply

the eigenvalues of ∇2Gn(θ
k) + λ2Id are bounded away from zero and from above for all

k ∈ {1, 2, . . . }, which completes the proof.
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