
Markov chain Monte Carlo

Karl Oskar Ekvall∗ Galin L. Jones†

University of Minnesota

March 15, 2019

Abstract

Practically relevant statistical models often give rise to probability distributions that

are analytically intractable. Fortunately, we now have a collection of algorithms, known

as Markov chain Monte Carlo (MCMC), that has brought many of these models within

our computational reach. MCMC is a simulation technique that allows one to make

(approximate) draws from complex, high dimensional probability distributions. A stag-

gering amount of research has been done on both the theoretical and applied aspects

of MCMC. This article does not intend to be a complete overview of MCMC but only

hopes to get the reader started in the right direction. To this end, this article be-

gins with a general description of the types of problems that necessitate the use of

MCMC. It then introduces the fundamental algorithms and addresses some general

implementation issues.

1 Introduction

Many statistical methods at some stage require sampling from a probability distribu-

tion. In ideal cases, one can generate independent and identically distributed (i.i.d.)

observations from the desired distribution. In many practically relevant models, how-

ever, this is either not possible or prohibitively time consuming. Fortunately, in a wide

range of settings, Markov chain Monte Carlo (MCMC) can be used in place of i.i.d.

sampling [cf. 1, 11]. Because of this, after the seminal paper by Gelfand and Smith [3],

MCMC has become integral to Bayesian analysis where such complicated distributions

often arise, but is also important in some frequentist settings [5].

∗ekvall@umn.edu
†galin@umn.edu

1

We illustrate with one of the most common purposes of generating (pseudo-)random

numbers. If h is some real-valued function and X is a random variable, then we want

to calculate an expectation in the form

µh := E(h(X)) <∞.

For different choices of h, many problems both in statistics and other disciplines can

be written in this way. If µh is complicated to calculate analytically or by numeri-

cal integration, an alternative is to generate X1, . . . , Xm, independent with the same

distribution as X, and approximate µh by

µ̂h :=
1

m

m∑
i=1

h(Xi).

Here, X can be a random vector or something more general, but the main points of

our discussion are equally well grasped thinking of X as a random number. Several

useful properties of µ̂h are immediate from classical statistical results: (i) µ̂h is un-

biased, (ii) the law of large numbers (LLN) says that µ̂h is consistent as m tends

to infinity, and (iii) if E(h(X)2) < ∞, the central limit theorem (CLT) says that µ̂h

is approximately normally distributed for large m. The LLN is important because it

says, loosely speaking, that we can improve the estimate by simulating longer, and the

the CLT is important because it lets us quantify the uncertainty in the estimate. In

particular, var(µ̂h) can be estimated by s2h/m, where s2h = m−1
∑m

i=1(h(Xi)−µ̂h)2, and

approximate confidence intervals for µh can be created by appealing to the CLT.

The only difference between this and classical statistics is that the variables are gen-

erated in a computer. Methods that use the generation of random numbers are called

Monte Carlo (MC) methods and µ̂n is called a MC estimator of µh. MC methods

with i.i.d. variables are sometimes called ordinary MC or i.i.d. MC.

MCMC is similar to ordinary MC but with the key difference that the generated

variables X1, . . . , Xm need be neither independent, nor have the same distributions.

Rather, as the name suggests, they are generated as a Markov chain. Since i.i.d.

variables form a Markov chain, ordinary MC is a special case of MCMC. The power of

MCMC, however, is that the useful properties of µ̂h discussed above (LLN and CLT)

continue to hold for much more general chains. Such chains can be constructed in many

cases where i.i.d. sampling is infeasible and, hence, MCMC is more widely applicable

than ordinary MC. For an introduction to Markov chain theory see [10, 12].

We say that X1, X2, . . . is a Markov chain if the conditional distribution of Xi given

X1, . . . , Xi−1, i ≥ 2, depends only on Xi−1; this is known as the Markov property. It

follows from the Markov property that a Markov chain is characterized by its initial

2

distribution (the distribution of X1), and its transition kernel P defined by

P (x,A) = P(Xi ∈ A | Xi−1 = x),

for any subset A of the state space, the set in which the Markov chain takes its values.

If the initial distribution and kernel is such that the distribution of X2 is the same as

that of X1 we say that the initial distribution is invariant for the kernel. More generally,

a distribution F is invariant for the transition kernel P if Xi ∼ F implies Xi+1 ∼ F ,

i ≥ 1. Using this definition it can be shown that if the initial distribution is invariant

for P , then in fact every Xi, i ≥ 1 has the same distribution. Such Markov chains

are called stationary, and they are indeed stationary in the usual sense for stochastic

processes.

Let FX denote the distribution of X and suppose we generate a Markov chain

with initial distribution FX and a kernel P for which FX is invariant. Then by the

preceding discussion X1, . . . , Xm are possibly dependent but identically distributed

random variables with the same distribution as X. Hence, µ̂h is an unbiased estimator

of µh. Moreover, it can be shown that under additional conditions µ̂h is consistent and

asymptotically normal with variance κ2h/m, where, with σ2h = var(h(X)),

κ2h = σ2h + 2
∞∑
i=1

cov(h(X1), h(X1+i)).

Recall, however, that MCMC is often used precisely because sampling from FX is

infeasible. Hence, generating the stationary chain is also infeasible as it requires X1 ∼
FX . Fortunately, it can be shown that if µ̂h is consistent and satisfies a CLT when the

initial distribution is FX , then the same is true for any other initial distribution. This

tells us that if the simulation is long enough (m is large enough), then the starting

value X1, whether selected at random or set to some fixed number, is unimportant.

In practice this argument is somewhat problematic because it is hard to know what

long enough means, but let us ignore that for now—we will return to the issue of

starting values later. Next we outline how to, given a target distribution, generate

Markov chains for which that distribution is invariant. The focus is on two of the

most common algorithms, the Metropolis–Hastings (MH) algorithm and the Gibbs

sampler.

1.1 Metropolis–Hastings

Suppose that we want to estimate µh and know the target density only up to a nor-

malizing constant, or up to scaling. That is, we know that X has a distribution FX

3

with density fX satisfying

fX(x) = cp(x)

for some c > 0 and function p. Of course, the fact that densities must integrate to one

tells us that c = 1/
∫
p(x) dx, but if p is complicated to integrate, c is not known in any

practical sense. Thus, even though p can be evaluated we cannot compute c or easily

sample from FX . Settings like this are exceedingly common in Bayesian statistics.

Given an unnormalized density like p, the MH algorithm (Algorithm 1) constructs

a Markov chain with a transition kernel for which FX is invariant. That is, the MH

algorithm lets us sample approximately from FX even though we only know the corre-

sponding density fX up to a normalizing constant. The algorithm transitions between

states as follows: given that the chain is at state Xi = xi, a move is proposed to a new

state y drawn from some distribution with density q(y | xi). Then, the move is either

accepted, which happens with a probability that depends on p(y), p(xi), q(y | xi),
and q(xi | y), or rejected. If the move is rejected, the chain stays in the same place

for one iteration and then another move is proposed. Since the proposal distribution

and the acceptance probability depend on the current state but no previous states the

algorithm indeed generates a Markov chain.

To implement the MH algorithm one needs to select a proposal distribution (den-

sity) q(· | ·). Any proposal distribution having support containing that of p will lead to

the chain having the right invariant distribution. However, the convergence properties

of the chain are in general affected by the choice. A discussion of standard strategies

for selecting the proposal distribution is provided by Robert and Casella [11].

The following example illustrates how the MH algorithm can be used in Bayesian

statistics. The example is chosen to be simple enough that no MCMC is actually

required, which makes the results easy to verify using numerical integration or i.i.d.

sampling, but also complicated enough to convey some key ideas.

Example 1.1 (Bayesian estimation of normal mean and variance with conjugate pri-

ors). Suppose we have 30 independent observations y1, . . . , y30 drawn from a normal

distribution with the unknown mean µ? = 1 and variance 1/τ? = 1, where the stars

are used to indicate unknown population values. We wish to incorporate prior informa-

tion about the parameters and specify the prior distribution in two stages by letting

µ | τ ∼ N (a, τ−1b−1) and τ ∼ G(c, d), where G(c, d) denotes the gamma distribution

with mean c/d. That is,

f(µ | τ) = (2π)−1/2(bτ)1/2e−bτ(µ−a)
2/2 and f(τ) =

dc

Γ(c)
τ c−1e−τdI(τ > 0),

4

Algorithm 1 Metropolis–Hastings

1: Input: Starting value X1 and length of chain m

2: for i = 1, . . . ,m do

3: Given Xi = xi, draw proposal y from a distribution with density q(y | xi).
4: Calculate the Hastings ratio

r(xi, y) =
p(y)q(xi | y)
p(xi)q(y | xi)

.

5: Randomly pick the next state Xi+1 by accepting or rejecting proposal y:

Xi+1 =

y w. prob. α(xi, y) = min[1, r(xi, y)]

xi w. prob. 1− α(xi, y)

6: end for

for hyperparameters a ∈ R, b > 0, c > 0, and d > 0, where Γ(·) denotes the gamma

function. In an application the hyperparameters would be chosen to reflect the prior

beliefs about µ and τ . For concreteness, we here somewhat arbitrarily set them to

a = 0, b = c = d = 1.

In Bayesian statistics the interest is in the posterior density f(µ, τ | y). By

standard rules for probability densities, the posterior density satisfies

f(µ, τ | y) =
f(y | µ, τ)f(µ | τ)f(τ)

f(y)

∝ f(y | µ, τ)f(µ | τ)f(τ)

where ∝ means equality holds up to scaling by a quantity not depending on µ or τ .

Multiplying the prior densities by the likelihood

f(y | µ, τ) = (2π)−n/2τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2

)

we find that the posterior satisfies

f(µ, τ | y) ∝ τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2 − τµ2/2− τ

)
. (1)

Let us define θ = (µ, τ) and denote the expression in (1) by p(θ; y). The density from

which we want to sample is f(θ | y) = p(θ; y)/
∫
p(θ; y) dθ. In this example the state

space of the Markov chain to be generated is the parameter set of the model for the

data y—this is typical for Bayesian statistics. Accordingly, for the remainder of this

5

Figure 1: Metropolis–Hastings Example chain. Horizontal dashed lines indicate sample

averages of the plotted observations.

example we let Θ = R× (0,∞) denote the state space, θi = (µi, τi) the ith state of the

Markov chain, and ξ the proposed value with conditional density q(ξ | θi) in the MH

algorithm, so as to not confuse it with the observed data.

We are ready to define a MH algorithm for exploring the distribution with density

f(θ | y) on Θ, which as mentioned amounts to selecting a proposal distribution. We take

the proposal distribution to be multivariate normal and centered at the current state.

More precisely, ξ | θi ∼ N (θi, 0.25I2). The covariance matrix is selected with some

experimentation to result in an acceptance rate (the proportion of accepted proposals)

of roughly 0.25 (see Rosenthal [13] for a motivation of this number). The starting

value is set to θ0 = (µ0, τ0) = (ȳ, 1/s2y), where ȳ is the sample average and s2y the

biased sample variance; these are the maximum likelihood estimators (MLEs) of

the parameters µ and τ . The hope is that the MLEs are in a high-density region of

the posterior.

Figure 1 shows the output from running the MH algorithm for 500 iterations. The

short, flat segments where the chain stays in the same place for a few iterations corre-

spond to rejected proposals. The sample paths can be used to get an MCMC estimate

of
∫
h(θ)f(θ) dθ for any function h for which the integral exists. If we are, for example,

interested in the Bayes estimate of µ, E(µ | y), then we can take h(θ) = h((µ, τ)) = µ

and estimate
∫
h(θ)f(θ | y) dθ =

∫
µf(µ | y) dµ by

∑500
i=1 h(θi)/500 =

∑500
i=1 µi/500.

This sample average, which is indicated by a dashed line in 1, is 0.73. This can be

compared to the MLE ȳ = 0.77, and the true mean µ? = 1. We will return to this

example below when implementing a Gibbs sampler.

6

1.2 Gibbs samplers

Suppose that the random variable X which distribution FX we would like to sample

from is multivariate, i.e. a random vector. We can then split X into sub-vectors,

say X = (X(1), . . . , X(s)); each X(i) can be univariate or multivariate. We will call

X(1), . . . , X(s) the components of X. To implement a Gibbs sampler, we need to

be able to sample from the conditional distribution of any one component given the

rest, also known as the component’s full conditional distribution. The Gibbs sampler

proceeds by updating the states of the components iteratively, drawing new states from

the full conditional distributions as detailed in Algorithm 2.

To implement a Gibbs sampler one has to select how to partition the vector X into

components. In other words, one has to select which elements of the Markov chain to

update together. As an example, if we have a three-dimensional target distribution,

then Xi = (Xi,1, Xi,2, Xi,3) can be updated in four ways: (i) each element is updated

separately, (ii) Xi,1 and Xi,2 are updated together (and Xi,3 is updated by itself), (iii)

Xi,1 and Xi,3 are updated together, or (iv) Xi,2 and Xi,3 are updated together. Which

elements are updated together can affect the convergence properties of the chain and

hence it can be worthwhile to consider different configurations. There is no general

rule to guide the selection, though there is some evidence that strongly correlated

components should be updated together. We next illustrate how a Gibbs sampler can

be implemented in practice.

Algorithm 2 Gibbs sampler

1: Input: Starting value X1 = x1 and length of chain m

2: for i = 1, . . . ,m do

3: for j = 1, . . . , s do

4: Draw x
(j)
i+1 from the distribution of

X(j) |
(
X(1) = x

(1)
i+1, . . . , X

(j−1) = x
(j−1)
i+1 , X

(j+1)
i = x

(j+1)
i , . . . , X(s) = x

(s)
i

)
5: end for

6: end for

Example 1.1 (continued). Recall, the posterior distribution that we are considering

has a density that is known up to scaling:

f(µ, τ | y) ∝ τn/2 exp

(
−τ

2

n∑
i=1

(yi − µ)2 − τµ2/2− τ

)
.

7

Since the chain is bivariate, our only choice is to update µ and τ separately if we

want to implement a Gibbs sampler—there is no other way to split the chain into

components. To find the necessary full conditional distributions, notice that for a fixed

τ the exponent of f(µ, τ | y) is a quadratic function in µ, and for for a fixed µ the

exponent is linear in τ . Using this, one can show that

µ | τ, y ∼ N

(
(n+ 1)−1

n∑
i=1

yi, τ
−1(n+ 1)−1

)

and

τ | µ, y ∼ G(n/2 + 1,

n∑
i=1

(yi − µ)2/2 + µ2/2 + 1).

We implement a Gibbs sampler that first updates τ and then µ. There is no specific

reason for this choice—updating µ first works equally well. As with the MH algorithm,

the starting value is θ0 = (ȳ, 1/s2y). Notice, however, that with the Gibbs sampler

only the starting value for µ matters since τ is updated first, and the distribution from

which τ2 is drawn does not depend on τ1. Figure 2 shows the output from running the

Gibbs sampler for 500 iterations. The sample paths there depicted can be used in the

same way as those of the MH algorithm. Of course, estimates based on the output in

Figure 2 will be different from those based on the output in Figure 1. In this particular

case, one might prefer estimates based on the Gibbs sampler since, for both µ and τ ,

the sample path depicted in Figure 2 looks more like that of uncorrelated variables

than that in Figure 1. This indicates the variance of estimators based on the Gibbs

chain may be lower than that of those based on the MH chain in this example. The

Gibbs chain is also exploring a larger part of the state space than the MH chain in the

first 500 iterations.

1.3 Variance estimation

We have said that MCMC often leads to a consistent and asymptotically normal µ̂h,

and we have shown how to construct Markov chains that have the desired invariant

distribution. However, not all chains with the right invariant distribution give a consis-

tent and asymptotically normal µ̂h. Conditions that ensure these properties are fairly

technical and in general have to be verified on a case-by-case basis [7]. For the re-

mainder of this introduction we assume that µ̂h is both consistent and asymptotically

normal. That is, we assume that approximately for large m,

µ̂h ∼ N (µh, κ
2
h/m),

8

Figure 2: Gibbs chain. Horizontal dashed lines indicate sample averages of the plotted

observations.

where as before

κ2h = σ2h + 2
∞∑
i=1

cov(h(X1), h(X1+i)). (2)

Under i.i.d. sampling, the infinite sum of autocovariances in (2) vanishes and κ2h = σ2h

can be estimated by the sample variance s2h. In contrast, for more general MCMC

algorithms the infinite sum typically does not vanish and κ2h is more challenging to

estimate than σ2h. It is also important to notice that κ2h and σ2h quantify different

things: σ2h is a characteristic of the invariant distribution only but κ2h depends on

the joint distribution of all the variables in the chain. In particular, two stationary

Markov chains with the same invariant distribution but different autocovariances will

lead to the same σ2h but different κ2h. Since κ2h directly determines the uncertainty in

the estimate µ̂h, it is desirable to, all else equal, pick an algorithm that leads to small

(or negative) autocovariances. When we return to our example below, we will see that

two perfectly reasonable MCMC algorithms can, for the same problem, generate chains

that have the same invariant distribution but substantially different autocovariances.

In most realistic settings κ2h is unknown and must be estimated using the Markov

chain if we hope to say something about the uncertainty in µ̂h. There are several

methods for estimating κ2h that use the same chain used to estimate µh [2, 4, 15].

Here, we will give a short introduction to the method of batch means which gives an

estimator that is easy and fast to compute. Suppose that b is a divisor of m and define,

9

for k = 1, . . . ,mb = m/b, the batch mean

µ̂h,k = b−1
b∑
i=1

h(Xb(k−1)+i).

Thus, µ̂h,1 is the MCMC estimator of µh based on only the first b variables in the chain,

µ̂h,2 is that based on only the next b variables, and so on. The batch means estimator

of κ2h is

κ̂2h =

√
b

mb

mb∑
i=1

(µ̂h,i − µ̂h)2.

When deciding on the number of batches there is a trade-off between estimating the

mean in each batch precisely, which requires a large b, and estimating the variability

among batches precisely, which requires a large mb. Geyer [6] suggests that 20 – 30

batches is enough for most applications. Another common choice is to pick the number

of batches to be approximately mb =
√
m. After computing κ̂2h, confidence intervals

for µh, and corresponding tests, can be computed using a t-distribution; for α ∈ (0, 1),

a 100(1− α)% confidence interval for µh is given by

µ̂h ± tb−1,1−α/2
√
κ̂2h/m,

where tb−1,1−α/2 is the (1− α/2)th quantile of the t-distribution with b− 1 degrees of

freedom.

In practice, we are rarely interested in estimating just one characteristic of the

target distribution, so h is usually multivariate, or vector-valued. For such settings a

multivariate analysis that takes into account the dependence between the components

of the multivariate estimator m−1
∑m

i=1 h(Xi) is appropriate. Methods for multivariate

output analysis are available [14].

Example 1.1 (continued). We have previously in this example generated two Markov

chains that have the desired invariant distribution and either could be used to estimate

µh for some h of interest. Let us continue to focus on the choice h(θ) = h((µ, τ)) = µ,

indicating the quantity of interest is the posterior mean E(µ | y). For both the MH

algorithm and the Gibbs sampler, we estimate the posterior mean by the sample mean

of the generated µ-chain, i.e. the first component of the bivariate chain. The 500

iterations of the chains displayed in Figures 1 and 2 are not enough to get reliable

estimates µh or κ2h. After running the chains for 50,000 iterations, the estimate of

µh based on the MH chain is 0.743 and the estimate based on the Gibbs chain is

0.742. Moreover, if we calculate the sample variance of each chain, s2h, they are both

approximately 0.024. However, the batch means estimate of κ2h is 0.160 for the MH

chain and 0.021 for the Gibbs chain. This illustrates what was mentioned before,

10

namely that µh and σ2h are the same for both chains, but κ2h is different since the

autocovariances in the chains are different. The estimates of κ2h indicate that in this

particular example, the infinite sum in (2) is larger for the MH chain than the Gibbs

sampler. Indeed, we noted earlier that the sample paths in Figure 2 look more like

those of uncorrelated variables than those in Figure 1.

1.4 Starting and stopping

Whether one is using a MH algorithm, a Gibbs sampler, or something else, deciding

where to start the algorithm and when to stop sampling is usually up to the user. It

is generally a good idea to pick a starting point in a high-density region of the target

distribution. If we could start the chain with the invariant distribution we would likely

get a starting value in such a region, and hence, intuition suggests, those points are

good to start at. Of course, in many problems we do not have a good guess for a

high-density region and then this method is not applicable. Another common practice

is to discard a number of the early observations in the chain, say X1, . . . , XB for some

B < m, and instead estimate µh using only the last m−B observations. This practice

is known as burn-in and the idea is that the burn-in should bring the chain closer to

its stationary distribution, approximating a situation where the initial value is drawn

from the invariant distribution. This intuitive idea is not so easily motivated formally,

however, and many authorities consider burn-in questionable [6].

Having selected where to start, one also needs to decide when to stop. In general, a

longer chain is better and it is hence uncontroversial to say that m should be as large as

possible. Even so, it is in many settings desirable to have an idea about when m is large

enough, in some quantifiable sense. There are ways to measure the distance between

the distribution of the chain and the target distribution that can in some cases be used

to determine an appropriate m before starting the simulation. This subject is rather

technical and we refer the reader to Jones and Hobert [9] for an introduction. One may

also construct stopping rules that use, for example, an estimate of var(µ̂h) to decide

when to terminate a simulation in real time [8, 14]. For example, one may calculate

the width of the confidence interval for µh, i.e. td−1,1−α/2

√
κ̂2h/m, and terminate when

it falls below some pre-specified threshold. We illustrate this idea in the context of the

running example.

Example 1.1 (continued). We have considered
∑m

i=1 µi/m as an estimator for the

posterior mean E(µ | y). In Figures 1 and 2 we used m = 500. When discussing

variance estimation we instead used m = 50000. To see how to employ a stopping rule

to decide on an appropriate m based on the batch means estimate of var(µ̂h), suppose

11

we are content with a width of 0.05 for a 95 % confidence interval for E(µ | y). To avoid

stopping the simulation too early due to poor estimates of var(µ̂h) for small m, let us

implement a stopping rule as follows: for every m = 10000, 11000, 12000, . . . calculate

a 95% confidence interval for E(µ | y); if its width is less than 0.05, simulate for another

1000 iterations and try again, and otherwise stop the simulation. Implementing this in

our example, we find that the MH algorithm stops after m = 142000 iterations while

the Gibbs sampler stops after m = 134000 iterations.

Related Articles

See also Bayesian Inference; Bayesian Analysis and Markov Chain Monte

Carlo Simulation; Monte Carlo Methods, Univariate and Multivariate; Markov

Chain Monte Carlo, Introduction; Markov Chain Monte Carlo, Conver-

gence and Mixing in; Markov Chain Monte Carlo Methods; Markov Chain

Monte Carlo Algorithms

References

[1] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors. Handbook of Markov

chain Monte Carlo. Chapman & Hall / CRC, 2011.

[2] J. M. Flegal and G. L. Jones. Batch means and spectral variance estimators in

Markov chain Monte Carlo. The Annals of Statistics, 38(2):1034–1070, apr 2010.

[3] A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association, 85(410):398–

409, 1990.

[4] C. J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7(4):473–

483, nov 1992.

[5] C. J. Geyer. On the convergence of Monte Carlo maximum likelihood calculations.

Journal of the Royal Statistical Society. Series B (Methodological), 56(1):261–274,

1994.

[6] C. J. Geyer. Introduction to Markov chain Monte Carlo. In S. Brooks, A. Gelman,

G. L. Jones, and X.-L. Meng, editors, Handbook of Markov chain Monte Carlo.

Chapman & Hall / CRC, 2011.

12

[7] G. L. Jones. On the Markov chain central limit theorem. Probability Surveys,

1(0):299–320, 2004.

[8] G. L. Jones, M. Haran, B. S. Caffo, and R. Neath. Fixed-width output analysis

for Markov chain Monte Carlo. Journal of the American Statistical Association,

101(476):1537–1547, 2006.

[9] G. L. Jones and J. P. Hobert. Honest exploration of intractable probability dis-

tributions via Markov chain Monte Carlo. Statistical Science, 16(4):312–334, nov

2001.

[10] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge

University Press, 2011.

[11] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer New York,

2013.

[12] G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC

algorithms. Probability Surveys, 1(0):20–71, 2004.

[13] J. S. Rosenthal. Optimal proposal distributions and adaptive MCMC. In

S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, editors, Handbook of Markov

chain Monte Carlo. Chapman & Hall / CRC, 2011.

[14] D. Vats, J. M. Flegal, and G. L. Jones. Multivariate output analysis for markov

chain monte carlo. Biometrika, 2018+.

[15] D. Vats, J. M. Flegal, and G. L. Jones. Strong consistency of multivariate spectral

variance estimators in Markov chain monte carlo. Bernoulli, 24(3):1860–1909,

2018.

13

	Introduction
	Metropolis–Hastings
	Gibbs samplers
	Variance estimation
	Starting and stopping

