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1. Simple linear regression
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Experiment with fixed dose

We want to investigate the effect of dose on response.

We consider doses

(x <- seq(0, 1, length.out = 30))

## [1] 0.00000000 0.03448276 0.06896552 0.10344828 0.13793103 0.17241379
## [7] 0.20689655 0.24137931 0.27586207 0.31034483 0.34482759 0.37931034
## [13] 0.41379310 0.44827586 0.48275862 0.51724138 0.55172414 0.58620690
## [19] 0.62068966 0.65517241 0.68965517 0.72413793 0.75862069 0.79310345
## [25] 0.82758621 0.86206897 0.89655172 0.93103448 0.96551724 1.00000000

For each dose xi, we select one patient at random from the population of interest.

For each patient we observe the response yi, i = 1, . . . , 30.
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Dose and response

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Does response depend on dose?

dose

re
sp

on
se

6/116



A model for the effect of dose on response

Before we perform our experiment, the response of the ith person is a random variable Yi
whose distribution (potentially) depends on xi.

The particular value yi we observe depends on who were selected in the random sampling; not
every person responds the same, there may be some measurement error, etc.

A simple linear regression model assumes

E(Yi) = µ(xi) = α + βxi.

• µ is a function, and µ(xi) is the value of that function evaluated at xi
• α and β are unknown constants (parameters).
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Interpreting the parameters

The parameters are interpreted using the equation

E(Yi) = α + βxi.

• If xi increases by one unit, Yi increases by β units on average

• If xi = 0, the mean of Yi is α

• In the dose and response setting, β is the treatment effect and α is the average response
for an untreated person
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The population regression line

In practice the true regression line (dashed) is unknown because α and β are.

We only know it here because I generated the data in R (it’s not “real” data).

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Population regression line

dose

re
sp

on
se

9/116



Estimating the regression line

In ordinary least squares (OLS) the parameters α and β are estimated by the a and b which
minimize the sum of squared residuals

RSS =
n∑
i=1

(yi − a− bxi)2.

We often denote those a and b by α̂ and β̂ , respectively.

The estimated regression line is
µ̂(xi) = α̂ + β̂xi.
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Least squares estimates in R

fit <- lm(y ~ x); coef(fit)

## (Intercept) x
## -0.1140490 0.9948813

plot(y ~ x, ylab = ”response”, xlab = ”dose”); abline(fit); abline(a = 0, b = 1, lty = 2)
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Minimizing the sum of squares∗

The * indicates a slide with material that will not be tested

To find the least squares estimates, we minimize the Objective function:

SSR(a, b) =
n∑
i=1

(yi − a− bxi)2

First order optimality conditions:

∂SSR(a, b)
∂a

= −2
n∑
i=1

(yi − a− bxi) = 0

∂SSR(a, b)
∂b

= −2
n∑
i=1

(yi − a− bxi)xi = −2
∑
i=1

(yi − a)xi + 2b
n∑
i=1

x2i = 0
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Minimizing the sum of squares∗

Solving the first order conditions gives

α̂ = a = ȳ− bx̄,

where ȳ = n−1 ∑n
i=1 xi and x̄ are sample averages.

β̂ = b =
∑n

i=1(yi − ȳ)(xi − x̄)∑n
i=1(xi − x̄)2

=
sxy
s2x

,

where sxy = (n− 1)−1 ∑n
i=1(yi − ȳ)(xi − x̄) and s2x are the sample covariance and variance,

respectively.
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Example with binary predictor

Suppose xi is 1 if the ith patient receives treatment A and 0 if they receive treatment B.

Then for patients receiving treatment A

E(Yi) = α,

and for patients receiving treatment B

E(Yi) = α + β.

If β = 0, the mean of Yi is the same in both groups.
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Example with binary predictor

x <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1); y <- rnorm(10, 0.5 * x) # alpha = 0, beta = 0.5
plot(x, y)
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Example with binary predictor

b <- cov(x, y) / var(x); a <- mean(y) - b * mean(x)
c(a, b) # Parameter estimates

## [1] 0.5728966 0.2988240

c(a, a + b) # Group mean estimates

## [1] 0.5728966 0.8717206

c(mean(y[x == 0]), mean(y[x == 1])) # Sample group means

## [1] 0.5728966 0.8717206
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Example with binary predictor

Estimating means in two different groups is a special case of linear regression!

In fact, we will see that t-tests, ANOVA, and confidence intervals for the mean are obtained as
special cases of inference in linear regression.

• Some work to do before we get there
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Uncertainty quantification

We have point estimates α̂ and β̂ and now want to quantify our uncertainty:

• Are the estimates reliable?

• What are the standard errors of the estimates?

• How to create confidence intervals for α and β?

• Are α and β significantly different from zero?
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The error term

Define the random error term Ui, i = 1, . . . , n, by

Ui = Yi − µ(xi),

or equivalently
Yi = α + βxi + Ui.

The error term Ui is an unobservable random variable:

• We do not know its realized value ui = yi − µ(xi) because α and β are unknown.

• We do observe the residual ri = yi − µ̂(xi) ̸= ui.
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Error term assumptions and inference

To make inferences about α and β , we assume

1. The mean of Ui is zero; E(Ui) = 0
2. The variance of Ui is constant (homoscedastic, not depending on i or xi); var(Ui) = σ2 > 0

Assumption 1 ensures the estimators are unbiased:

E(α̂) = α; E(β̂) = β
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Error term assumptions and inference

Together, assumption 1 and 2 ensure, by a central limit theorem,

β̂
approx.∼ N

(
β,

σ2

(n− 1)s2x

)
; α̂

approx.∼ N
(

α,
σ2(s2x + x̄2)
(n− 1)s2x

)

• The variance tends to zero, which implies the estimators are consistent (close to the true
values with increasing probability as n→∞)

• We can use the approximate normality to calculate standard errors, tests, and confidence
intervals
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Inference with normaly distributed error term and known σ2

If the error term is normally distributed, then α̂ and β̂ are normally distributed (no
approximation).

If, moreover, the variance σ2 of the error is known, a 95 % confidence interval is:

β̂ ± 1.96×
√

var(β̂) = β̂ ± 1.96
σ√

(n− 1)sx
.

Recall that 1.96 = qnorm(0.975) is the 0.975th quantile of the standard normal distribution.
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Estimating σ2

If the error term is normally distributed with mean zero and unknown variance σ2, we cannot
use the confidence interval on the previous slide.

To get a confidence interval, we will first need to estimate σ2.

We will use

s2r =
1

n− 2

2∑
i=1

r2i =
1

n− 2
SSR,

where as before ri = yi − µ̂(xi) is the residual.

Dividing by n− 2 ensures E(S2r) = σ2 so the estimator is unbiased.
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Inference with normaly distributed error term and unknown σ2

The standard error of β̂

se(β̂) =
√

s2r
(n− 1)s2x

is an estimate of √
var(β̂) =

√
σ2

(n− 1)s2x
.
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Inference with normaly distributed error term and unknown σ2

The statistic
β̂ − β

S2r/{(n− 1)s2x}
∼ tn−2.

and therefore a 95 % confidence interval is

β̂ ± qt(0.975, n− 2)× se(β̂).

25/116



Example with binary predictor

b <- cov(x, y) / var(x)
a <- mean(y) - b * mean(x)
res <- y - a - x * b
s2r <- sum(res^2) / (10 - 2)
se_b <- sqrt(s2r / ((10 - 1) * var(x)))
b + c(-1, 1) * qt(0.975, 10 - 2) * se_b

## [1] -0.7553887 1.3530367

confint(lm(y ~ x))

## 2.5 % 97.5 %
## (Intercept) -0.1725444 1.318338
## x -0.7553887 1.353037
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Hypothesis testing

We can use the fact

β̂ − β

S2r/{(n− 1)s2x}
∼ tn−2.

to test the null hypothesis β = β0 for any β0 of interest.

Suppose we want to test the null hypothesis β = 0. Under the null hypothesis,

T =
β̂

S2r/{(n− 1)s2x}
∼ tn−2
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Hypothesis testing

Recall the intuition behind hypothesis testing:

Reject if what we observe is unlikely under the null hypothesis

More formally, we reject on the 5 % level if under the null hypothesis

P(|T| ≥ |t|) ≤ 0.05,

where |t| is the value of T observed in our sample. That is, we reject if

t > qt(0.975, n− 2) or t < qt(0.025, n− 2) ⇐⇒ |t| ≥ qt(0.975, n− 2)
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Hypothesis testing
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c(qt(0.025, 8), qt(0.975, 8))

## [1] -2.306004 2.306004
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Example with binary predictor

# Test beta = 0
t <- b / se_b
abs(t)

## [1] 0.6536531

qt(0.975, 10 - 2)

## [1] 2.306004

2 * pt(abs(t), 10 - 2, lower = F) # p-value

## [1] 0.5316699
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Example with binary predictor

summary(lm(y ~ x))

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3510 -0.2114 0.2212 0.3323 0.9286
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5729 0.3233 1.772 0.114
## x 0.2988 0.4572 0.654 0.532
##
## Residual standard error: 0.7228 on 8 degrees of freedom
## Multiple R-squared: 0.0507, Adjusted R-squared: -0.06796
## F-statistic: 0.4273 on 1 and 8 DF, p-value: 0.5317
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Example with binary predictor

Recall, β = 0 is the same as the two groups having the same mean.

t.test(y[x == 1], y[x == 0], var.equal = T)

##
## Two Sample t-test
##
## data: y[x == 1] and y[x == 0]
## t = 0.65365, df = 8, p-value = 0.5317
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.7553887 1.3530367
## sample estimates:
## mean of x mean of y
## 0.8717206 0.5728966
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2. Simple logistic regression
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The linear probability model

Suppose Yi is binary (Bernoulli); that is, it takes the value 1 with probability pi and the value 0
with probability 1− pi.

Then the linear regression model

pi = E(Yi) = µ(xi) = α + βxi

is also known as the linear probability model.

This model can be useful, but it has an important drawback.
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The linear probability model

In many settings, there is no upper bound on the possible values of xi.

For any β ̸= 0, large enough |xi| can lead to pi = α + βxi > 1 or pi < 0, which are impossible!
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Logistic regression

A common solution is to assume instead

pi = E(Yi) = µ(xi) =
1

1− exp(−α− βxi)
= h(α + βxi),

where h is known as the logistic function, defined by

h(z) =
1

1+ exp(−z)
.
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The logistic function

h <- function(z){1 / (1 + exp(-z))}
plot(h, -10, 10)
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Logistic regression

No matter what α + βxi is, µ(xi) = h(α + βxi) is a value between 0 and 1, as required by the
Bernoulli distribution.

The marginal effect of xi is

∂µ(xi)
∂xi

= βh′(α + βxi) = β
exp(−α− βxi)

{1+ exp(−α− βxi)}2
.

This is not easy to interpret, but:

• It is zero if β = 0

• It has the same sign as β

• It is smaller for large |α + βxi|
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Interpretation with binary predictor

If xi is binary, then
P(Yi = 1 | xi = 1)/P(Yi = 0 | xi = 1)
P(Yi = 1 | xi = 0)/P(Yi = 0 | xi = 0)

= eβ,

so eβ is an odds ratio.

For example, suppose:

• Yi = 1 if patient i recovers and Yi = 0 otherwise
• xi = 1 if patient i receives treatment and 0 otherwise
• β = 0.2

Then the odds of surviving is exp(0.2) ≈ 1.2 times higher if the patient is treated.
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Estimating the parameters

It is possible to estimate α and β by least squares; that is, by the a and b which minimize

n∑
i=1

{yi − µ(xi)}2 =
n∑
i=1

{yi − h(a+ bxi)}2.

Let us look at an example in R.
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Logistic regression by least squares⋆

x <- runif(100, -1, 1)
y <- rbinom(100, 1, prob = h(x))
summary(nls(y ~ 1 / (1 + exp(-a - b * x)), start = list(a = 0, b = 1)))

##
## Formula: y ~ 1/(1 + exp(-a - b * x))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## a -0.08675 0.21101 -0.411 0.68190
## b 1.11371 0.41198 2.703 0.00809 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.4835 on 98 degrees of freedom
##
## Number of iterations to convergence: 3
## Achieved convergence tolerance: 3.385e-06
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Logistic regression by maximum likelihood

Least squares is not the most common way to fit a logistic regression model.

Instead, the standard fitting procedure is maximum likelihood.

Maximum likelihood estimates are the parameter values which maximize the probability of
observing the data we did observe.
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Maximum likelihood

Our observed responses are y1, . . . , yn. The probability of observing those values before we
performed the experiment sampling was

P({Y1 = y1} ∩ {Y2 = y2} ∩ · · · ∩ {Yn = yn})

Because the events are independent (random sampling), this is equal to

P(Y1 = y1)P(Y2 = y2) · · · P(Yn = yn).
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Logistic regression by maximum likelihood⋆

The probability P(Yi = yi) is the mass function of Yi evaluated at yi, which is

f(yi) = pyii (1− pi)1−yi ,

where pi = µ(xi) = h(α + βxi).

Therefore,

P(Y1 = y1)P(Y2 = y2) · · · P(Yn = yn) =
n∏
i=1

h(α + βxi)yi{1− h(α + βxi)}1−yi .

44/116



The likelihood function

The function L defined by

L(α, β) =
n∏
i=1

h(α + βxi)yi{1− h(α + βxi)}1−yi (⋆)

is called the likelihood function. Observe, here α and β are arguments to the function, not fixed
at the true values.

• The α and β which maximize L are the maximum likelihood estimates of the true α and β .

• The maximum likelihood estimates depend on the data because L does.

• The maximizers can be computed when given data, so they are statistics.

• Before sampling when the data are random, the maximizers of L are also random
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Example in R

summary(glm(y ~ x, family = binomial))

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5864 -1.0431 -0.7659 1.0714 1.6619
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.08065 0.20886 -0.386 0.69939
## x 1.09520 0.39387 2.781 0.00543 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.47 on 99 degrees of freedom
## Residual deviance: 130.14 on 98 degrees of freedom
## AIC: 134.14
##
## Number of Fisher Scoring iterations: 4
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What you need to know about maximum likelihood

You should

• Know what maximum likelihood estimation is (with discrete variables)

• How to do it in R for the models we discuss

• How to interpret the output from R (estimate, se, z-value, p-value)

How to find the estimates, derive the formulas for standard errors, etc. are topics for more
advanced statistics classes.
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3. The role of covariates
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Covariates

A covariate is a variable (potentially) related to the response.

Suppose we randomly sample n people in Stockholm and record

• Yi = 1 if person i had COVID-19 in the last 30 days, zero otherwise
• X1i = 1 if person i were fully vaccinated 30 days ago, zero otherwise
• X2i = the age of person i

We are interested in the effect of vaccination on the probability of COVID-19.

• Which covariates should we include in the analysis, and how?
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Different roles of covariates

It is common to call the effect we are interested in the treatment effect.

In the example, the effect of vaccination on probability of COVID-19 is the treatment effect.

Age may also be important.
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Causal inference

Causal inference – distinguish causal effects from spurious correlations

A DAG (directed acyclic graph) can help clarify:

X1 X2

Y

• Nodes and edges

• Arrows indicate direction of causality
• Parents and children, descendants and ancestors

• No particular model is assumed
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Paths

A direct path indicates a causal relationship

• X1 → Y and X2 → X1 → Y (a chain)
• X1 has a direct effect and is a mediator for the effect of X2

A backdoor path from treatment to response can lead to spurious correlation

• X1 ← X2 → Y (a fork)
• X2 is called a confounder
• If vaccine has no effect on COVID-19 and age increases probability of vaccine and probability
of COVID-19, there will be a spurious negative correlation between vaccine and COVID-19.
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Blocking a path

It is clear we have to account for age, but how?

We can block the backdoor path by conditioning on age

• consider the effect of the vaccine for fixed age

Let’s look at an example in R.
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Example in R

n <- 1e4
age <- sample(20:90, n, replace = T)
old <- as.numeric(age >= 60)
vaccine <- rbinom(n, 1, h(2 * old))
covid <- rbinom(n, 1, h(-2 - vaccine + 3 * old))

# True probabilities
c(”y,v” = h(-2 - 1), ”y,u” = h(-2), ”o,v” = h(-2 - 1 + 3), ”o, u” = h(-2 + 3))

## y,v y,u o,v o, u
## 0.04742587 0.11920292 0.50000000 0.73105858
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Conditioning on a confounder

A naive comparison of means without conditioning on age indicates vaccine has negative effect:

mean(covid[vaccine == 1]) - mean(covid[vaccine == 0])

## [1] 0.08403924

Conditioning on age:

# For old people
mean(covid[vaccine == 1 & old == 1]) - mean(covid[vaccine == 0 & old == 1])

## [1] -0.246411

# For young people
mean(covid[vaccine == 1 & old == 0]) - mean(covid[vaccine == 0 & old == 0])

## [1] -0.08602107
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Another type of covariate

Consider the DAG:

X1 X2

Y

• X1 is vaccination, X2 is travel (no effect on Y!), and Y is COVID-19

There is a backdor path from X1 to Y, and X2 is a collider on that path.

When a path has a collider on it, that path is closed and you should not condition on the
collider.
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Example in R

vaccine <- rbinom(n, 1, 0.5)
covid <- rbinom(n, 1, h(-2 * vaccine))
travel <- rbinom(n, 1, h(5 * vaccine - 10 * covid))
mean(covid[vaccine == 1]) - mean(covid[vaccine == 0])

## [1] -0.377719

mean(covid[vaccine == 1 & travel == 1]) - mean(covid[vaccine == 0 & travel == 1])

## [1] 0.0009378664

mean(covid[vaccine == 1 & travel == 0]) - mean(covid[vaccine == 0 & travel == 0])

## [1] 0.2901262
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Backdoor paths in general

You want to close all backdoor paths from treatment to response.

May need to condition on several variables, let’s call the collection of variable we condition on Z:

A path is blocked if:

• it contains a chain or fork whose middle node is in Z, or
• it contains a collider such that neither the middle node nor or any of its descendatnts are
in Z

It may not be possible to block all backdoor paths!
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Example with three covariates

X1 X2 X3

Y

The path X1 → X2 ← X3 → Y contains one fork and one collider

• It is closed if we do not condition because it contains a collider
• It is closed if we condition on X3 only
• It is open if we condition on X2 only
• It is closed if we condition on X2 and X3
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More difficult example with three covariates

X1 X2 X3

Y

(1) The path X1 → X2 ← X3 → Y contains one fork and one collider.

(2) The path X1 → X2 → Y contains a fork.

• Path (2) is open unless we condition on X2

• Conditioning on X2 opens path (1), so we close it by conditioning on X3.
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Things to address

To make this useful in practice we need to understand:

• How to examine the effect of a random, numeric covariate on a random response.

• How to condition on several variables at the same time.

We can address all of these with regression methods.
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Random covariates in regression

Random covariates can be used in regression, but the formal motivation is different.

We now say the conditional mean of Yi given Xi is

E(Yi | Xi) = µ(Xi),

for some known function µ. In linear regression µ(Xi) = α + βXi and in logistic regression
µ(Xi) = 1/{1+ exp(−α− βXi)}.

• Treatment of conditional distributions is outside our scope, suffices to know the same
methods work.
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Conditional expectation

We can interpret the conditional expectation

E(Y | X)

as the population average of Y for any given value of X. When we consider this expectation for a
particular value x of X, it is common to write

E(Y | X = x).
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Logistic regression with random covariate

(fit <- glm(covid ~ vaccine, family = binomial))

##
## Call: glm(formula = covid ~ vaccine, family = binomial)
##
## Coefficients:
## (Intercept) vaccine
## -0.002737 -1.974659
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
## Null Deviance: 12460
## Residual Deviance: 10710 AIC: 10710

µ̂(vacc) = P̂(covid | vacc) = 1
1+ exp(0.00274− 1.97× vacc)
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Logistic regression with random covariate

a <- unname(coef(fit)[1]); b <- unname(coef(fit)[2])
h(a) # Estimate of P(covid | not vacc)

## [1] 0.4993157

h(a + b) # Estimate of P(covid | vacc)

## [1] 0.1215967

mean(covid[vaccine == 0])

## [1] 0.4993157

mean(covid[vaccine == 1])

## [1] 0.1215967
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Logistic regression with random numeric covariate

severe <- rbinom(n, 1, h(-3 + 0.05 * age))
(fit <- glm(severe ~ age, family = binomial))

##
## Call: glm(formula = severe ~ age, family = binomial)
##
## Coefficients:
## (Intercept) age
## -3.0470 0.0502
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
## Null Deviance: 13740
## Residual Deviance: 11590 AIC: 11590
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Logistic regression with random numeric covariate

µ̂(age) = P̂(severe | age) = 1
1+ exp(3.05− 0.050× age)
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4. Multiple regression
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4. Multiple regression

Inmultiple regression, we have a vector of p regressors Xi = [Xi1, . . . , Xip] affecting the response.

Multiple linear regression assumes

E(Y | Xi) =
n∑
j=1

Xijβj = Xi1β1 + · · ·+ Xipβp.

Multiple logistic regression assumes

E(Y | Xi) = h

 n∑
j=1

Xijβj



69/116



Parameter interpretation

It is common to let the first predictors Xi1 = 1 for all i so that β1 is an intercept (which we
previously denoted α).

The parameter βj indicates the effect of Xij on the mean of Yi holding all the other regressors
fixed.

Including a random covariate as regressor is a way to condition on that covariate.
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Example with binary variables

Consider the same example as before:

n <- 1e4
age <- sample(20:90, n, replace = T)
old <- as.numeric(age >= 60)
vaccine <- rbinom(n, 1, h(2 * old))
covid <- rbinom(n, 1, h(-2 - vaccine + 3 * old))

E(Yi | Xi) =
1

1+ exp(2+ vacc− 3× old)

We have β = [β1, β2, β3] = [−2,−1, 3].
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Example with binary variables

If we do not include old as regressor:

glm(covid ~ vaccine, family = binomial)

##
## Call: glm(formula = covid ~ vaccine, family = binomial)
##
## Coefficients:
## (Intercept) vaccine
## -1.3021 0.4402
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
## Null Deviance: 11660
## Residual Deviance: 11580 AIC: 11580

The estimate suffers from omitted variable bias.
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Example with binary variables

Similar results if age is included instead of old.

If we do include old as regressor:

glm(covid ~ vaccine + old, family = binomial)

##
## Call: glm(formula = covid ~ vaccine + old, family = binomial)
##
## Coefficients:
## (Intercept) vaccine old
## -1.996 -1.005 2.940
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9997 Residual
## Null Deviance: 11660
## Residual Deviance: 9048 AIC: 9054

No omitted variable bias.
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Example with binary response, numeric covariate

vaccine <- rbinom(n, 1, h(0.01 * age))
covid <- rbinom(n, 1, h(-2 - vaccine + 0.05 * age))
glm(covid ~ vaccine, family = binomial)

##
## Call: glm(formula = covid ~ vaccine, family = binomial)
##
## Coefficients:
## (Intercept) vaccine
## 0.4777 -0.6237
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9998 Residual
## Null Deviance: 13850
## Residual Deviance: 13630 AIC: 13630
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Example with binary response, numeric covariate

glm(covid ~ vaccine + age, family = binomial)

##
## Call: glm(formula = covid ~ vaccine + age, family = binomial)
##
## Coefficients:
## (Intercept) vaccine age
## -1.95467 -1.01148 0.04902
##
## Degrees of Freedom: 9999 Total (i.e. Null); 9997 Residual
## Null Deviance: 13850
## Residual Deviance: 11670 AIC: 11680
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Modeling choices

We have seen a DAG can help decide which covariates should be conditioned on.

But how do we know in practice how they affect the response? That is, how do we know which
model to pick?

We don’t! Many models are consistent with the same DAG.
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Difference between DAG and model

For example, all of

µ(X) = h(β1X1 + β2X2)

µ(X) = h(β1X1 + β2X22)

µ(X) = |β1X1|/(1+ |β1X1|+ |β2X2|)

are consistent with the following DAG

X1 X2

Y
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Model selection

We need tools for model selection.

Let us first focus on testing the importance of some regressors assuming the rest of the model
is correct.

For example, we want to compare

(M1) µ(X) = β1X1

(M2) µ(X) = β1X1 + β2X2

(M3) µ(X) = β1X1 + β2X2 + β3X21

All fit in our framework if we define X3 = X21 , so no new fitting methods are needed.
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Nested models

We say that models M1–M3 are nested since:

• M1 is a special case of M2 with β2 = 0
• M2 is a special case of M3 with β3 = 0
• M1 is a special case of M3 with β2 = β3 = 0

We can compare nested models using hypothesis tests.
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Sum of squared residuals

We start with linear multiple regression where β̂ is the β = [β1, . . . , βp] which minimizes

n∑
i=1

Yi −
p∑
j=1

βjXij

2

.

Define

SSR =
n∑
i=1

Yi −
p∑
j=1

β̂jXij

2

=
n∑
i=1

r2i .
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Sum of squared residuals

Let SSR1 be the sum of squared residuals for M1 and SSR2 the sum of squared residuals from M2.

Why don’t we just pick the model whose SSR is smaller?

Let β̃ be the estimate from M1 and β̂ the estimate from M2.

SSR1 =
n∑
i=1

(
Yi − β̃1Xi1 − 0Xi2

)2
≥

n∑
i=1

(
Yi − β̂1Xi1 − β̂2Xi2

)2
= SSR2.

Adding regressors (more flexibility) always gives lower SSR!

• Does not matter whether those regressors are actually related to the response
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F-test in regression

We can perform a hypothesis test instead.

Under the null hypothesis that the true β2 = 0:

F =
SSR1 − SSR2
SSR2/(n− 2)

∼ F1,n−2.

Reject the null hypothesis if

F > qf(1− α, 1, n− 2),

where α ∈ (0, 1) is the significance level and qf is the quantile function for the F-distribution.
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F-test in regression

More generally, let SSRU be the sum of squared residuals for an unrestricted model and SSRR
the sum of squared resilduals for a restricted model which assumes some of the coefficients in
the unrestricted model are zero. Then

F =
(SSRR − SSRU)/q
SSRU/(n− p)

∼ Fq,n−p,

where q is the number of restrictions and p the number of regressors in the unrestricted model.

Reject the null hypothesis the coefficients are zero if

F > qf(1− α, q, n− p).
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Example in R

n <- 45
x1 <- runif(n); x2 <- rexp(n)
y <- rnorm(n, mean = -0.1 + x1 + 0.1 * x2, sd = 0.5)
# Test both slope coefficients are zero
fit_UR <- lm(y ~ x1 + x2); fit_R <- lm(y ~ 1)
SSR_UR <- sum(residuals(fit_UR)^2); SSR_R <- sum(residuals(fit_R)^2)
((SSR_R - SSR_UR) / 2) / (SSR_UR / (n - 3))

## [1] 9.021929

qf(0.95, 2, n - 3)

## [1] 3.219942
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Example in R

summary(fit_UR)

##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1185 -0.2297 0.0459 0.2775 1.1365
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.11928 0.18516 -0.644 0.522939
## x1 1.12097 0.26403 4.246 0.000118 ***
## x2 0.06993 0.09455 0.740 0.463636
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.516 on 42 degrees of freedom
## Multiple R-squared: 0.3005, Adjusted R-squared: 0.2672
## F-statistic: 9.022 on 2 and 42 DF, p-value: 0.00055
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Example in R

anova(fit_R, fit_UR)

## Analysis of Variance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x1 + x2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 44 15.989
## 2 42 11.184 2 4.8049 9.0219 0.00055 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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ANOVA as a special case

Recall ANOVA can be used to test whether the means µ1 = · · · = µp for p normally distributed
populations / groups.

For example, are the flipper lengths the same for all three species?

library(palmerpenguins)
boxplot(flipper_length_mm ~ species, data = penguins)
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ANOVA as a special case

Let xi1 = 1, xi2 = 1 if penguin i is Chinstrap and zero otherwise, and xi3 = 1 if penguin i is
Gentoo and zero otherwise.

E(Yi | Xi = xi) = β1 + β2xi2 + β3xi3.

The mean for Adelie penguins is µ1 = β1, the mean for Chinstrap penguins is µ2 = β1 + β2,
and the mean for Gentoo penguins is µ3 = β1 + β3.

The null hypothesis µ1 = µ2 = µ3 is the same as β2 = β3 = 0.
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ANOVA as a special case

y <- penguins$flipper_length_mm
x1 <- as.numeric(penguins$species == ”Chinstrap”)
x2 <- as.numeric(penguins$species == ”Gentoo”)
anova(lm(y ~ 1), lm(y ~ x1 + x2))

## Analysis of Variance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x1 + x2
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 341 67427
## 2 339 14953 2 52473 594.8 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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ANOVA as a special case

anova(lm(flipper_length_mm ~ species, data = penguins))

## Analysis of Variance Table
##
## Response: flipper_length_mm
## Df Sum Sq Mean Sq F value Pr(>F)
## species 2 52473 26236.6 594.8 < 2.2e-16 ***
## Residuals 339 14953 44.1
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Nested logistic regression models

For logistic regression there are no residuals in the usual sense so other methods are needed.

We will use likelihood-based methods.

In multiple logistic regression, β̂ is the β maximizing

L(β) =
n∏
i=1

pyii (1− pi)yi−1, pi = µ(xi) = h

 p∑
j=1

βjxij

 .
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Nested logistic regression models

Let β̃ be the estimate from a model which restricts some coefficients to zero. Then

L(β̂) ≥ L(β̃).

Adding regressors always leads to greater likelihood!

Under the null hypothesis, approximately for large n,

LLR = 2 log

{
L(β̂)
L(β̃)

}
∼ χ2

q,

where q is the number of restrictions. So reject if

LLR > qchisq(1− α, q).
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Example in R

anova(glm(covid ~ vaccine, family = binomial),
glm(covid ~ vaccine + age, family = binomial), test = ”LRT”)

## Analysis of Deviance Table
##
## Model 1: covid ~ vaccine
## Model 2: covid ~ vaccine + age
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 9998 13626
## 2 9997 11671 1 1954.6 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Non-nested models

What if we want to compare non-nested models?

• Hypothesis testing typically not useful
• Selecting the model with the greatest likelihood will generally lead to too large models

We can use infomation criteria.
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Information criteria

Information criteria are essentially the likelihood with a penalty for the number of parameters:

Akaike’s Information Criterion (AIC):

−2 log L(β̂) + 2p.

Schwarz’s Bayesian Criterion (BIC):

−2 log L(β̂) + log(n)p

• Pick the model with the smallest IC.
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AIC or BIC

BIC will favor smaller models than AIC.

If the true model is among the candidates, BIC is likely to select it if the sample is large.

If the true model is not among the candidates, AIC is likely to select the model that comes
closest if the sample is large.

Some people prefer AIC for prediction and BIC for inference, but there are no hard rules.
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Example in R

AIC(lm(covid ~ vaccine + vaccine:age))

## [1] 13023.44

AIC(lm(covid ~ age + vaccine + I(age^2)))

## [1] 12272.72
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Example in R

BIC(lm(covid ~ vaccine + vaccine:age))

## [1] 13052.28

BIC(lm(covid ~ age + vaccine + I(age^2)))

## [1] 12308.77
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Interactions and power terms

The term age : vaccine is called an interaction.

One can think of age as modifying the effect of vaccination.

E(Y | X) = β1 + β2vaccine+ β3vaccine× age.

If β3 is positive, then the effect of vaccination on the response increases with age.
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Interactions and power terms

The term I(age2) says

E(Y | X) = β1 + β2age+ β3vaccine+ β4age2.

If β4 < 0, then the effect of age on the response decreases with age.

100/116



5. Survival analysis
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Survival function

Survival analysis is concerned with the time T a randomly selected patient (or something or
someone else of interest) survives.

Often depends on covariates.

The survival function is the function S defined by

S(t) = P(T > t).

Also called complementary distribution function since the complement of T > t is T ≤ t and

S(t) = 1− P(T ≤ t) = 1− F(t).
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Kaplan–Meier estimator

The most common estimator of S(t) is the Kaplan–Meier estimator

Ŝ(t) =
∏
i:ti≤t

(
1− #{died at time ti}

#{survived at least until ti}

)
=

∏
i:ti≤t

(
1− di

ni

)
.

It is a non-parametric estimate (does not assume a particular distribution).
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Example in R

t <- floor(rexp(30, rate = 1 / 100))
plot(sort(t), xlab = ”id”, ylab = ”time survived”)
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Example in R

library(survival)
plot(survfit(Surv(t, rep(1, 30)) ~ 1),

xlab = ”time”,
ylab = ”survival probability”)
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Censoring

The Kaplan–Meier estimator is designed to handle censoring from above.

Typically, there is some maximum observable time t∗.

That is, if T > t∗ we cannot observe it’s value, only that it’s greater than t∗.

For example, a patient survived to the end of the study.
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Example in R

t <- pmin(t, 200) # Take the minimum of t and t_star = 200
plot(sort(t), ylab = ”time survived”, xlab = ”id”)
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Example in R

observed <- (t != 200)
Surv(t, observed)

## [1] 64 79 112 40 7 184 74 24 155 106 27 200+ 200+ 50 145
## [16] 200+ 147 135 27 197 28 15 20 200+ 200+ 75 78 1 140 27

plot(survfit(Surv(t, observed) ~ 1))
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Hazard

We want survival times to possibly depend on covariates.

It is common to model the hazard function

h(t) =
f(t)
S(t)

=
f(t)

1− F(t)

which is approximately, for small ϵ > 0,

P(T < t+ ϵ | T ≥ t)
ϵ

.
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Example

Constant hazard characterizes the exponential distribution:

The cdf and pdf of the exponential with mean 1/λ are, respectively, F(t) = 1− exp(−λt) and
f(t) = λ exp(−λt). Therefore,

f(t)
S(t)

=
λ exp(−λt)
exp(−λt)

= λ.
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Proportional hazards model

The Cox proportional hazards regression model assumes

h(t; Xi) = h0(t) exp

 p∑
j=1

Xijβj

 ,

where h0 is called the baseline hazard function.

It is the hazard function for someone with all Xij = 0 (“intercept”).

• h0(t) = λ for all t and βj = 0 for all j corresponds to the exponential distribution for T.
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Proportional hazards or not

The hazards are proportional in the sense that the ratio of the hazards for two different
covariate vectors do not depend on t.
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Proportional hazards or not

One can show that
h(t) = − d

dt
log{S(t)}.

Thus, two hazards h1 and h2 are proportional if

c log{S1(t)} = log{S2(t)}.

for some constant c. Loosely speaking, plots of estimated log-survival functions should have
similar shapes.

The quantity − log S(t) is called the cumulative hazard because it is equal to
∫ t
0 h(s)ds.
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Proportional hazards example
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Fitting a Cox proportional hazards model

fit <- survival::coxph(Surv(time_to_find, find_cheese) ~ long_training, data = lab5_dat)
summary(fit)

## Call:
## survival::coxph(formula = Surv(time_to_find, find_cheese) ~ long_training,
## data = lab5_dat)
##
## n= 400, number of events= 252
##
## coef exp(coef) se(coef) z Pr(>|z|)
## long_trainingTRUE 0.9401 2.5603 0.1297 7.248 4.23e-13 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## long_trainingTRUE 2.56 0.3906 1.986 3.301
##
## Concordance= 0.608 (se = 0.016 )
## Likelihood ratio test= 53.8 on 1 df, p=2e-13
## Wald test = 52.53 on 1 df, p=4e-13
## Score (logrank) test = 56.28 on 1 df, p=6e-14
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Plotting the estimated baseline cumulative hazard

bh <- survival::basehaz(survival::coxph(Surv(time_to_find, find_cheese) ~ long_training,
data = lab5_dat),

centered = F)
plot(bh$hazard ~ bh$time, type = ”l”, lwd = 2, xlab = ”time”, ylab = ”cumulative hazard”)
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