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Abstract

We consider universal inference in variance components models, focusing on settings
where the parameter is near or at the boundary of the parameter set. Two cases, which
are not handled by existing state-of-the-art methods, are of particular interest: (i)
inference on a variance component when other variance components are near or at
the boundary, and (ii) inference on near-unity proportions of variability, that is, one
variance component divided by the sum of all variance components. Case (i) is relevant,
for example, for the construction of componentwise confidence intervals, as often used by
practitioners. Case (ii) is particularly relevant when making inferences about heritability
in modern genetics. For both cases, we show how to construct confidence intervals that
are uniformly valid in finite samples. We propose algorithms which, by exploiting the
structure of variance components models, lead to substantially faster computing than
naive implementations of universal inference. The usefulness of the proposed methods
is illustrated by simulations and a data example with crossed random effects, which are
known to be complicated for conventional inference procedures.

1 Introduction

Variance components models are used routinely in a wide variety of scientific applications.

Often times, multiple sources of variation are present, in which case practitioners want to

understand the degree of total variation attributable to each source. In epidemiology, for

example, researchers want to understand how a trait’s variability is affected by additive

genetic effects and the environment (Heckerman et al., 2016), or by additive genetic effects and

gene-environment interactions (Pazokitoroudi et al., 2024). Similarly, in statistical genetics,

genetic effects can be partitioned by chromosome (Yang et al., 2011), partitioned into purely
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additive effects versus genetic interaction effects (Bloom et al., 2015; Vitezica et al., 2013),

partitioned into additive and dominance effects of SNP markers (Da et al., 2014), among

many other partitioning approaches (e.g., see Runcie and Crawford, 2019).

More generally, hierarchical and multilevel mixed models aim to quantify the degree of a

random variable’s variability that can be attributed to distinct sources of variation (Goldstein,

2011; Kreft and De Leeuw, 1998; Lee and Nelder, 1996; Rasbash and Goldstein, 1994). For

example, the variability in student test scores may be attributed to variation arising from

classroom effects, school-level effects, or community-wide effects.

One widely used model for capturing multiple sources of variation is the variance com-

ponents model. A variance components model assumes a vector Y ∈ Rn satisfies, for some

known symmetric and positive semi-definite K1, . . . , KM , M a positive integer,

Y ∼ N(0, σ2
K1

+ · · ·+ σ2
MKM + σ2

M+1In), (1)

where σ2
1, . . . , σ

2
M are the variance components. Here, we assume E(Y ) = 0 for simplicity but

later allow E(Y ) = Xβ for known X ∈ Rn×p and unknown β ∈ Rp. The distribution in (1)

sometimes results from a random effects model:

Y = Z1U1 + · · ·+ ZMUM + E,

where, independently for each m ∈ {1, . . . ,M}, random effects satisfy Um ∼ N(0, σ2
mIqm) for

some qm ∈ {1, . . . ,m}, and Zm ∈ Rn×qm . The error term E ∼ N(0, σ2
M+1In) is independent

of the random effects. Then, for every m ≤M , Km = ZmZ
T
m, so that the rank of Km is at

most qm ≤ n. To avoid degenerate distributions, we will typically assume the error variance

is nonnegative, σ2
M+1 > 0.

Our focus is hypothesis tests, or inferences more generally, for the variance components

and the proportions

h2m =
σ2
m∑M+1

m=1 σ
2
m

, m ∈ {1, . . . ,M}. (2)

The parameter h2m is often interpreted as the proportion of variability attributable to sources

encoded by Km, m ∈ {1, . . . ,M}. In statistical genetics, for example, Km can encode the

genetic similarly of individuals’mth chromosome. Then, h2m is the proportion of variance in the

outcome explained by the mth chromosome’s SNP genotypes (Yang et al., 2011). To facilitate

inference on the h2m we consider a reparameterization of (1) in terms of θ = (h21, . . . , h
2
M , τ

2)T,

where τ 2 =
∑M+1

m=1 σ
2
m. Then, the parameter set Θ ⊆ RM+1 is the set of θ such that
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∑M
m=1 h

2
m < 1, h2m ≥ 0 for all m, and τ 2 > 0. With these parameters Y is multivariate normal

with mean zero and covariance matrix

Σ = Σ(θ) = τ 2

{
h21K1 + · · ·+ h2MKM +

(
1−

M∑
m=1

h2m

)
In

}
∈ Rn×n. (3)

Inference on the h2m is complicated in general because one or more of them are often

close to zero. That is, the true parameter is often at or near the boundary of the parameter

set. When M = 1, so that there is a single h2m, there are methods based on inverting score

test-statistics (Zhang et al., 2025) and simulation-based methods (Crainiceanu and Ruppert,

2004; Schweiger et al., 2018, 2016). However, the supporting theory for the simulation-based

methods is not applicable when M > 1, and the score-based confidence intervals have non-

nominal coverage probability when there are nuisance parameters near the boundary. For

example, a score-based confidence interval for h21 often has non-nominal coverage probability

if another h2m, m ≠ 1, is close to zero or one. Figure 1 illustrates this issue in a setting

where M = 2; the parameter of interest is h21, whose true value is zero; and h22 is a nuisance

parameter whose true value is on the horizontal axis. Clearly, the coverage probability for the

confidence interval for h21 is affected by the true value of the nuisance parameter, especially

when it is near one. Somewhat informally, the issue is that test-statistics for h21 depend on a

constrained maximum likelihood estimator of h22, and that estimator behaves irregularly near

the boundary.

The issues are easier to deal with when there are no nuisance parameters as, then, score-

based test-statistics can be evaluated at the null hypothesis parameter vector, no estimation

needed (Zhang et al., 2025; Ekvall and Bottai, 2025). However, even without nuisance

parameters, state-of-the art methods are unreliable when a h2m is near unity. The main reason

is that points where
∑M

m=1 h
2
m = 1 are often hard boundary points, in the sense that the

likelihood cannot be extended to such points, while points where a h2m = 0 are soft boundary

points (Elkantassi et al., 2023).

Here, we consider methods for componentwise inference for variance components in the

presence of nuisance parameters. The methods are based on universal inference, and in

particular split likelihood ratio tests (Wasserman et al., 2020). Consequently, the proposed

tests and confidence intervals are uniformly valid in finite samples, regardless of how close to

a soft or hard boundary the parameter is. Thus, even when there are no nuisance parameters,

the methods studied here can be preferable to common ones, which are often motivated by

asymptotic theory. We describe universal inference and its application to our setting in more
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Figure 1: Coverage probabilities for a score-based confidence interval for h21 = 0, for different
values of the nuisance parameter h22. Estimates based on 10,000 replications. The shaded
region indicates 95% confidence bands.

detail in Section 2. Briefly, the method relies on data splitting, where one set of data is used

to estimate parameters and the other to carry out the test. In our setting, where there is a

potentially complicated dependence structure, more care is needed when randomly splitting

the data than in settings with independent and identically distributed observations. A main

concern with universal inference is a lack of power compared to classical parametric methods,

which we address by using a randomized version of the split likelihood ratio test (Ramdas

and Manole, 2023).

There are several computational challenges with applying universal inference to (1),

especially when n is large. To address such issues we develop efficient algorithms for several

special cases of interest. For example, in a setting with crossed random effects, which are

known to complicate both computation and theory, we decrease the required time by several

orders of magnitude compared to a naive implementation.

2 Randomized Split Likelihood Ratio Test

Let Y ∈ Rn be a random vector with density fθ∗(y), θ
∗ ∈ Θ being the true value of the

parameter. Let LY (θ) = fθ(Y ) be the (random) likelihood function; that is, the density of Y ,

evaluated at Y , considered as a function of θ with domain Θ. In our setting the density and

likelihood correspond to (1), but universal inference applies more generally. Suppose we wish

to test test H0 : θ
∗ ∈ Θ0 ⊆ Θ versus HA : θ∗ ∈ Θ \Θ0. Recall that a conventional likelihood
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ratio test (LRT) can be based on the statistic

supθ∈Θ LY (θ)

supθ∈Θ0
LY (θ)

.

Under well-known regularity conditions, two times the logarithm of this statistic has an

asymptotic chi-square distribution, which can be used to construct tests with asymptotically

correct size. However, such regularity conditions do not hold in our setting, so we instead

consider the split LRT.

Let Y(0) ∈ Rn(0) and Y(1) ∈ Rn(1) be a random partition of Y , where n(0) + n(1) = n.

That is, every element of Y is in exactly one of the Y(i), i ∈ {0, 1}. The randomization is

done independently of Y , but it need not be uniform on the set of possible partitions of

given sizes. Let LY(1)
(θ) be the likelihood based on Y(1) and LY(0)|Y(1)

(θ) likelihood based

on the conditional distribution of Y(0) given Y(1). Let also θ̂1 ∈ argmaxθ∈Θ LY(1)
(θ) and

θ̂0 ∈ argmaxθ∈Θ0
LY(0)|Y(1)

(θ), assuming they exist. Then the split likelihood-ratio statistic is

Tn =
LY(0)|Y(1)

(θ̂1)

LY(0)|Y(1)
(θ̂0)

. (4)

The test that rejects H0 if Tn > 1/α is valid at level α ∈ (0, 1) (Wasserman et al., 2020); that

is, the size of the test is at most α, and hence confidence regions obtained by inverting the

test have coverage probability at least 1− α. In fact, the test remains valid, and has greater

power, if rejection is instead based on comparing to a uniform random variable (Ramdas and

Manole, 2023). We state these facts formally in the following known result and provide a

proof in the Appendix for completeness. It will be important for later to note that the same

result and proof holds if, in (4), θ̂1 is replaced by any other estimator based on Y(1) only.

Similarly, θ̂0 can be replaced by any θ̃ such that LY(0)|Y(1)
(θ̃) ≥ LY(0)|Y(1)

(θ̂0).

Theorem 1. The split likelihood ratio test that rejects if Tn > 1/α is a uniformly valid level

α test, i.e., for any Θ0 ⊆ Θ and θ∗ ∈ Θ0, it holds that Pθ∗(Tn > 1/α) ≤ α. Moreover, the

randomized split likelihood ratio test that rejects if Tn > U/α, with U ∼ U(0, 1) independently

of Tn, is also uniformly valid, and it is more powerful than the split likelihood ratio test.
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2.1 Application to Variance Components

Assume (1) with the parameterization in (3) and let

Ψ(h2) =
M∑

m=1

h2mKm +

(
1−

M∑
m=1

h2m

)
In, h2 = (h21, . . . , h

2
M)T.

Then, ignoring additive terms not depending on θ,

lY (θ) = logLY (θ) = −1

2

(
log |Σ(θ)|+ Y TΣ(θ)−1Y

)
= −1

2

{
n log(τ 2) + log

∣∣Ψ(h2)
∣∣+ 1

τ 2
Y TΨ(h2)−1Y

}
.

Because the partitioning is independent of Y , Y(0) and Y(1) are jointly multivariate normal.

Thus, the marginal log-likelihood for Y(1) is similar to that for Y , with Y(1) and Σ(11) in place

of Y and Σ, respectively. Also,

Y(0) | Y(1) ∼ N
(
Σ(01)Σ

−1
(11)Y(1),Σ(00) − Σ(01)Σ

−1
(11)Σ(10)

)
,

where Σ(ij) = Σ(ij)(θ) = Eθ(Y(i)Y
T

(j))− Eθ(Y(i))Eθ(Y(j))
T, i, j ∈ {0, 1}. Thus, the conditional

log-likelihood lY(0)|Y(1)
(θ) is

= −1

2
log |Σ(00) − Σ(01)Σ

−1
(11)Σ(10)| (5)

− 1

2

{
(Y(0) − Σ(01)Σ

−1
(11)Y(1))

T(Σ(00) − Σ(01)Σ
−1
(11)Σ(10))

−1

(Y(0) − Σ(01)Σ
−1
(11)Y(1))

}
.

We can write the Σ(ij) in terms of the Km as follows. For each m ∈ {1, . . . ,M}, let Km
(ij)

be the matrix obtained from Km by keeping only the rows with indices corresponding to

observations in Y(i) and columns with indices corresponding to observations in Y(j). Then

Σ(ij) =
M∑

m=1

h2mK
m
(ij) + I(i = j)

(
1−

M∑
m=1

h2m

)
In(0)

, i, j ∈ {0, 1},

where I(·) is an indicator function and n(0) the number of elements in Y(0).

Several challenges with implementing universal inference are evident from (5). In general,

finding the maximizers θ̂0 and θ̂1 is nontrivial and requires numerical optimization. To find
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θ̂1, we use off-the-shelf, gradient-based methods to maximize lY(1)
(θ). To that end, note that

for any element of θ, say θj,

∂lY (θ)

∂θj
= −1

2
tr

[{
Σ(θ)−1 − Σ(θ)−1Y Y TΣ(θ)−1

} ∂Σ(θ)
∂θj

]
, (6)

and similarly for lY(1)
(θ) but with Y(1) and Σ(11) in place of Y and Σ, respectively. When

j =M + 1, so that θj = τ 2, (6) is

− 1

2
tr
[
Σ(θ)−1

{
In − τ−2Y Y TΨ(h)−1

}
Ψ(h2)

]
= −1

2
tr
[
τ−2

{
In − τ−2Y Y TΨ(h)−1

}]
,

which vanishes if evaluated at τ 2 = n−1Y TΨ−1(h2)Y . It is routine to show this stationary

point is in fact a global partial maximizer. Thus, an algorithm for finding θ̂1 can alternate

between updating optimization variables corresponding to τ 2 and h2, with the former update

being available in closed form. By contrast, first order conditions for h2 based on (6) cannot in

general be solved analytically. Thus, we update h2 using a gradient-based step. Equivalently,

we use gradient-based methods to maximize the profile log-likelihood h2 7→ lY(1)
{h2, τ̃ 2(1)(h2)},

where

τ̃ 2(1)(h
2) = n−1

(1)Y
T

(1)Ψ
−1
(11)(h

2)Y(1).

The derivatives of the profile log-likelihood, ∂lY(1)
{h2, τ̃ 2(h)}/∂h2m, are

∂lY(1)
(h2, τ 2)

∂h2m

∣∣∣∣∣
h2,τ̃2

(1)
(h2)

+
∂lY(1)

(h2, τ 2)

∂τ 2
∂τ 2(h2)

∂h2m

∣∣∣∣∣
h2,τ̃2

(1)
(h2)

=
∂lY(1)

(h2, τ 2)

∂h2m

∣∣∣∣∣
h2,τ̃2

(1)
(h2)

+ 0,

where the last equality is due to τ̃ 2(1)(h
2) satisfying the first order condition for an interior

partial maximizer; these calculations can be formalized (Milgrom and Segal, 2002). Thus,

updating τ 2 and then updating h2 using the gradient of the log-likelihood, is equivalent to

updating h2 using the gradient of the profile log-likelihood. Using (6), ∂lY(1)
(h2, τ 2)/∂h2m is

−1

2
tr
[{

Σ−1
(11)(θ)− Σ−1

(11)(θ)Y(1)Y
T

(1)Σ
−1
(11)(θ)

}
(Km

(11) − In(1)
)
]
. (7)
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Similar arguments apply to the problem of finding θ̂0. Let

Σ(0|1)(θ) = Σ(00)(θ)− Σ(01)(θ)Σ
−1
(11)(θ)Σ(10)(θ).

Note that Σ(0|1)(θ) = τ 2Ψ(0|1)(h
2), where Ψ(0|1) is defined like Σ(0|1) but replacing every Σ by

Ψ. Thus, omitting the h2 argument for simplicity, we have the partial maximizer

τ̃ 2(0|1) = argmax
τ2>0

lY(0)|Y(1)
(h2, τ 2)

= n−1
(0)(Y(0) −Ψ(01)Ψ

−1
(11)Y(1))

TΨ−1
(0|1)(Y(0) −Ψ(01)Ψ

−1
(11)Y(1)).

To apply gradient-based methods to the profile, conditional log-likelihood h2 7→ lY(0)|Y(1)
{h2, τ 2(0|1)(h2)},

observe

lY(0)|Y(1)
(θ) = lY (θ)− lY(1)

(θ).

Derivatives of the two terms on the right-hand side can be obtained as in (6) and (7).

In general, the objective functions we have discussed are nonconvex, and standard

algorithms can be computationally expensive due to matrix decompositions needed to deal

with the inverses, scaling approximately as n3. Additionally, even when the parameter is

identifiable in the distribution for Y , it can be unidentifiable, or nearly so, in the conditional

distribution of Y(0) given Y(1), as we will see examples of later.

The constraint
∑M

m=1 h
2
m < 1 is also nontrivial in general. An exception is the case where

M = 1 and K1
(11) is singular, because in that case any h21 ≤ 0 would lead to a Σ(11)(θ) that is

not positive definite, and hence an undefined or vanishing likelihood. Thus, for that case,

the log-determinant term in the multivariate normal log-likelihood acts as a barrier. For

the other cases, implementation is made easier by the fact that Theorem 1 continues to

hold if we ignore the constraint when finding θ̂0 and θ̂1. Specifically, we may replace θ̂0 by

θ̌0 = {ȟ2(0|1), τ̃ 2(0|1)(ȟ2(0|1))}T, where

ȟ2(0|1) ∈ argmax
h2∈RM

lY(0)|Y(1)
{h2, τ̃ 2(0|1)(h2)}.

As noted before Theorem 1, validity is retained since LY(0)|Y(1)
(θ̌0) ≥ LY(0)|Y(1)

(θ̂0). Similarly,

we can replace θ̂1 by θ̌1 = {ȟ2(1), τ̃ 2(1)(ȟ2)}T, where

ȟ2(1) ∈ argmax
h2∈RM

lY(1)
{h2, τ̃ 2(1)(h2)}.
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Validity is retained since θ̌1 is a function of Y(1) only. Both θ̌0 and θ̌1 can be obtained using

unconstrained optimization.

In the following section, we discuss special cases of interest where computation can be

made more efficient by using additional structure.

3 Testing Variance Components

3.1 Boundary Points

Suppose we wish to test whether all but one variance component are zero; without loss of

generality, σ2
M can be non-zero under the null hypothesis. Equivalently, h2M can be non-zero

under the null hypothesis. Thus, in the parameterization given by (3), Θ0 is the set of

θ = (h21, . . . , h
2
M , τ

2)T such that h21 = · · · = h2M−1 = 0, h2M < 1, and τ 2 > 0. This setting

is perhaps most natural when M = 2, in which case it corresponds to testing one variance

component with the other unconstrained. Even that special case is challenging for existing

methods when the unconstrained parameter is near the boundary.

The structure of Θ0 enables substantial computational gains compared to a naive im-

plementation. In particular, let KM = OΛOT by eigendecomposition and note that for any

θ ∈ Θ0,

Σ(θ) = τ 2{h2MKM + (1− h2M)In} = τ 2O{h2MΛ + (1− h2M)In}OT.

Consequently, upon replacing Y and Km by OTY and OTKmO, respectively, m ∈ {1, . . . ,M},
we may assume without loss of generality that KM = Λ. With this assumption, Σ(θ) is

diagonal for θ ∈ Θ0, which simplifies computation of θ̂0.

Specifically, when KM is diagonal, Σ(01)(θ) is a matrix of zeros for θ ∈ Θ0. Thus, for such

θ, lY(0)|Y(1)
(θ) = lY(0)

(θ), which equals

−1

2

∑
k:Yk∈Y(0)

{
log(τ 2) + log(h2Mλk + 1− h2M)

Y 2
k

τ 2(h2Mλk + 1− h2M)

}
,

where λk is the kth element of Λ and, with a slight abuse of notation, Yk ∈ Y(0) means

the kth element of Y is an element of Y(0). Thus, finding θ̂0 reduces to a one-dimensional

optimization problem over the interval [0, 1) with an easy-to-compute derivative. This problem

is substantially simpler than maximizing (5) in general, without diagonalization.
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3.2 Shared Eigenvectors

In some settings the eigenvectors of Km can be chosen not to depend on m; that is, one can

find an orthogonal O such that

OTKmO = Λm, m ∈ {1, . . . ,M}, (8)

where Λm is a diagonal matrix with the eigenvalues of Km on the diagonal.

One such example is when the Km model variation in orthogonal directions, or more

formally, KmKℓ = 0 for every m ≠ ℓ. Equivalently, by symmetry, every column of Km is

orthogonal to every column of Kℓ. This claim follows from well-known facts about commuting,

symmetric matrices; for completeness we give a more direct and constructive proof in the

Appendix.

Theorem 2. If symmetric matrices K1, . . . , KM satisfy KmKℓ = 0 for every m ̸= ℓ, then

they satisfy (8).

Assuming (8), OTY has the multivariate normal distribution in (1), but with Λm in

place of Km, m ∈ {1, . . . ,M}. Thus, replacing Y by OTY if needed, we may assume every

Km = Λm is diagonal. We make this assumption for the remainder of the section. To

set us up for a motivating example in the next section, we use the parameterization with

σ2 = (σ2
1, . . . , σ

2
M+1)

T ∈ Ω = [0,∞)M × (0,∞) and with some abuse of notation write Σ(σ2)

for the covariance matrix of the multivariate normal distribution in (1).

Since Σ(σ2) is diagonal for every σ2 ∈ Ω, lY(i)
(σ2) = is, for i ∈ {0, 1},

−1

2

∑
k:Yk∈Y(i)

{
log

(
M∑

m=1

σ2
mλmk + σ2

M+1

)
+

Y 2
k∑M

m=1 σ
2
mλmk + σ2

M+1

}
, (9)

where λmk is the kth diagonal element of Λm, m ∈ {1, . . . ,M}. Moreover, Y(0) and Y(1) are

independent, and hence lY(0)|Y(1)
= lY(0)

, which simplifies finding θ̂0 compared to the general

case. The derivatives ∂lY(i)
(σ2)/∂σ2

m needed for gradient-based methods are, for i ∈ {0, 1},

= −1

2

∑
k:Yk∈Y(i)

 λmk∑M
r=1 σ

2
rλrk + σ2

M+1

− λmkY
2
k(∑M

r=1 σ
2
rλrk + σ2

M+1

)2
 ,

where m ∈ {1, . . . ,M + 1} and λ(M+1)k = 1 for all k.
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When KmKℓ = 0 further simplifications are possible: not only may we assume Km = Λm,

but after doing so it holds that for each k, there is at most one m ∈ {1, . . . ,M} for which

λmk ̸= 0. Let λ(k) be that λmk, with λ(k) = 0 if no such m exists, and let σ2
(k) be the

corresponding σ2
m. Then, for i ∈ {0, 1}

lY(i)
(σ2) = −1

2

∑
k:Yk∈Y(i)

{
log
(
σ2
(k)λ(k) + σ2

M+1

)
+

Y 2
k

σ2
(k)λ(k) + σ2

M+1

}
,

and similarly for its derivatives.

3.3 Crossed Random Effects

Crossed random effects are known to be challenging both for theory and computation (Jiang,

2013; Ekvall and Jones, 2020; Papaspiliopoulos et al., 2020; Ghosh et al., 2022; Lyu et al.,

2024; Jiang et al., 2024; Jiang, 2025; Ekvall and Bottai, 2025). However, more efficient

computing is possible by using a connection to the setting with shared eigenvectors, in the

sense of (8). To introduce the setting, suppose momentarily that responses are naturally

organized as a matrix (Yij) with n1 rows and n2 columns, with observations in the same row

or column potentially dependent. A simple model with two crossed random effects is

Yij = U1i + U2j + Eij,

where U1i ∼ N(0, σ2
1), U2j ∼ N(0, σ2

2), and Eij ∼ N(0, σ2
3), independently for all i ∈ {1, . . . , n1}

and j ∈ {1, . . . , n2}. The U1i can be interpreted as row effects and the U2j as column effects.

More generally, suppose there are M crossed random effects, with nm observations along

the mth dimension, m ∈ {1, . . . ,M}. Define the index set

J = {(j1, j2, . . . , jM) : jm ∈ {1, 2, . . . , nm},m ∈ {1, 2, . . . ,M}},

and suppose that for (j) ∈ J ,

Y(j) = U1j1 + U2j2 + · · ·+ UMjM + E(j), (10)

where Umjm ∼ N(0, σ2
m) and E(j) ∼ N(0, σ2

M+1) are independent for all m ∈ {1, 2, . . . ,M}
and jm ∈ {1, 2, . . . , nm}. Following Ekvall and Bottai (2025), we can write this model as
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Y = ZU + E by letting

Z = (Z1, . . . , ZM), Zm = 1n1 ⊗ · · · ⊗ 1nm−1 ⊗ Inm ⊗ 1nm+1 ⊗ · · · ⊗ 1nM
,

m ∈ {1, . . . ,M}. Accordingly,

U = (UT

1 , . . . , U
T

M)T, Um ∼ N(0, σ2
mInm), m ∈ {1, . . . ,M}.

Now, to explore the connection to (8), define the projection matrices Pm = 1nm1
T
nm
/nm, and

RI
m = P1⊗· · ·⊗Pm−1⊗Inm ⊗Pm+1⊗· · ·⊗PM . Let also wm =

∏
k ̸=m nk. Then the covariance

matrix of Y is

Σ(σ2) = Z covσ2(U)ZT + σ2
M+1In

=
M∑

m=1

σ2
mwmR

I
m + σ2

M+1In.

Define Qm = Inm−Pm, R
Q
m = P1⊗· · ·⊗Pm−1⊗Qm⊗Pm+1⊗· · ·⊗PM , and RP = P1⊗· · ·⊗PM .

Then RI
m = RP +RQ

m and, consequently,

Σ(σ2) =
M∑

m=1

σ2
mwmR

Q
m +

(
M∑

m=1

σ2
mwm

)
RP + σ2

M+1In.

Now note, for any m ≠ ℓ, by properties of Kronecker products, PmQm = 0 and RPRQ
m =

RQ
mR

Q
ℓ = 0. Thus, by Theorem 2, there is an orthogonal O such that OTRQ

mO = DQ
m and

OTRPO = DP , for diagonal DQ
m, m ∈ {1, . . . ,M}, and DP . Thus, upon replacing Y by OTY ,

we may assume Σ(σ2) is diagonal. Specifically,

Σ(σ2) =
M∑

m=1

σ2
mwm(D

Q
m +DP ) + σ2

M+1In

=
M∑

m=1

σ2
mΛm + σ2

M+1In,

where Λm = wm(D
Q
m + DP ). Thus, inference can be based on (9). Note, however, that

ΛmΛℓ = wmwℓD
P ̸= 0 for m ≠ ℓ, so the further simplifications discussed following (9) are not

applicable.

The columns in the matrix O can be computed relatively cheaply using that eigenvectors
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of RQ
m, m ∈ {1, . . . ,M}, are Kronecker products of eigenvectors of the matrices P1, . . . , Pm−1,

Qm, Pm+1, . . . , PM . Specifically, there are nm − 1 orthonormal eigenvectors corresponding

to the eigenvalue one. Each of these is in the form 1m− ⊗ v ⊗ 1m+/
√
wm, where v is an

eigenvector of Qm corresponding to the eigenvalue one, and 1m− and 1m+ are vectors of ones

of lengths m− =
∑m−1

k=1 nk and m+ =
∑M

k=m+1 nk, respectively. Additionally, one column of

O can be the eigenvector 1n/
√
n of RP . Thus, we have 1 +

∑M
m=1(nm − 1) columns of O; the

remaining can be obtained by completing the orthonormal basis in any way.

3.4 Approximate Diagonalization

In some settings (8) may not hold exactly but approximately. That is, for an orthogonal O,

∥Λm −OTKmO∥ is small for every m, and hence, intuitively, OTY has a covariance matrix

that is close to diagonal. Similarly, ∥KmKℓ∥ can be small for every m ≠ ℓ. In either case, it

may be useful to replace Km by an approximation K̃m, m ∈ {1, . . . ,M}, such that the K̃m

are jointly diagonalizable as in (8). To formalize, let us consider an example that we will

examine in simulations.

Suppose M = 2 for simplicity, and that the qm < n greatest eigenvalues of Km are much

larger than the trailing n− qm, m ∈ {1, . . . ,M}. Suppose also K1 = Λ1 is diagonal, with the

diagonal elements of Λ1 sorted in decreasing order. Suppose also that K2 = O2Λ2O
T
2 , with the

eigenvalues of Λ2 sorted in decreasing order, and O2 = bdiag(Iq2 , O(2)) for an orthogonal O(2)

that is not the identity matrix. For simplicity we assume that the diagonal elements of each

are distinct. More specifically, the qm first elements of Λm are evenly spaced on, say, (a2, a3),

and for some constant c > 0, the trailing n− qm eigenvalues are evenly spaced numbers on

(0, a1) divided by a constant c ≥ 1. The larger c is, the better Km is approximated by the

K̃m that sets small eigenvalues to zero. Notably, for those K̃m, (8) holds with O = In.

4 Simulations

Fig.2 shows, in a setting with M = 2 variance components, Monte Carlo estimates of the

coverage probabilities for the score-based confidence interval discussed in the introduction

and the proposed randomized split LRT confidence interval. The confidence intervals are for

h21, with h
2
2 a nuisance parameter. In the simulations, the matrices K1 and K2 were set to

diagonal matrices with the eigenvalues of autoregressive correlation matrices with correlation

parameters 0.95 and 0.5, respectively. That is, K1 was diagonal with the eigenvalues of the

n× n matrix (0.95|i−j|), and similarly for K2. We set n = 300, h22 = 0, and τ 2 = 1. The value

13



of h21 is on the horizontal axis. Monte Carlo estimates, and the corresponding confidence

bands, are based on 10,000 replications.

Fig. 2 indicates that, when the nuisance parameter h22 is near one, the score-based

confidence interval for h21 is invalid. The distortion is substantial, with coverage as low as

0.88 for extreme parameter values. By contrast, the proposed confidence interval, while

conservative, is everywhere valid, as guaranteed by theory. The actual coverage probability

of the proposed interval is around 0.975 regardless of the value of the nuisance parameter.

For some values of the nuisance parameter this is substantially higher than the coverage

probability of the score-based interval, but when h22 is near zero the two intervals have similar

coverage probabilities.

Fig. 3 shows Mote Carlo estimates of rejection probabilities for the split likelihood ratio

test in three different scenarios, all with M = 2 variance components. For all three scenarios,

K1 and K2 were constructed as described in Sec. 3.4, with a1 = a2 = 5, a3 = 10, and c = 100.

Thus, the qmth eigenvalue of Km in decreasing order is 5 while the (qm + 1)th is 5/100. To

ensure a non-identity O(2), we drew it, before starting the simulations, uniformly on the

Stiefel manifold as the left singular vectors of a (n− q2)× (n− q2) matrix with independent

standard normal entries. We set q1 = 100 ̸= q2 = 120 to ensure identifiability. The true h21,

h22, and τ
2 were, respectively, 0, 0, and 1; the null hypothesis value of h21 is on the horizontal

axis.

The left plot in Fig. 3 shows the proposed test is conservative–the rejection probability at

h21 = 0 is below the nominal level. As the null hypothesis value moves away from the truth,

the rejection probability increases monotonically, as expected.

In the middle plot of Fig. 3, the proposed test is implemented with approximations K̃1

and K̃2 in place of the true K1 and K2 used to generate the data. Specifically, as discussed in

Sec. 3.4, K̃m sets the n− qm smallest eigenvalues to zero, which leads to jointly diagonalizable

K̃1 and K̃2. Thus, the test is much faster to implement than when using the true K1 and

K2. Nevertheless, both size and power appear to be only minimally affected; the rejection

probability curve is similar to that in the left plot, for which the true K1 and K2 were used.

In the right plot of Fig. 3, the true K1 and K2 are used, but θ̂0 and θ̂1 are replaced by,

respectively, the estimators θ̌0 and θ̌1 which ignore the constraints on h2. Because these

estimators are unconstrained, they are simpler to compute using off-the-shelf solvers; see

Sec. 2.1. The rejection probability curve shows the test retains validity, as guaranteed by the

arguments given before Theorem 1. However, the power of the test is clearly lower than that

of using constrained estimators. This is intuitive as the unconstrained estimators effectively
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ignore information about the parameter h2.

Fig.4 shows computing times for different implementations of the proposed split LRT

statistic. We consider a setting where the Km are jointly diagonalizable as in (8). Specif-

ically, we generated Km, m ∈ {1, . . . ,M} as follows. First, we eigendecomposed an n × n

autoregressive covariance matrix A = (Aij) = (0.5|i−j|) = OΛOT. Then, Λm was created by

setting ⌊n/(M + 1)⌋ of its diagonal entries equal to the corresponding entries of Λ, and the

remaining entries to zero. The indices for the non-zero entries for each Λm were randomly

sampled in such a way that they were different for each Λm, so that ΛmΛℓ = 0 for ℓ ≠ m, and∑M
m=1 Λm equals Λ with n−M⌊n/(M +1)⌋ entries set to zero. Finally, we set Km = OΛmO

T,

m ∈ {1, . . . ,M}, so KmKℓ = 0 for ℓ ̸= m. When there are M = 2 components (left plot),

data are generated with h2 = (0, 0.2)T and the null hypothesis is h21 = 0. When M = 3, data

are generated with h2 = (0, 0, 0.2)T and the null hypothesis is h21 = h22 = 0.

The three methods in Fig. 4 include a naive method that implements the split likelihood

ratio test as described in Sec. 2.1, without using the fact that the Km can be jointly

diagonalized. The second considered method uses this fact only when calculating θ̂0, emulating

a setting where diagonalization is possible under the null hypothesis, but not in general, as

in Sec. 3.1. The third method uses joint diagonalization both when computing θ̂0 and θ̂1.

For small sample sizes, the methods are all fast and hence no large differences are seen in

computing times. In contrast, when n is in the thousands, using diagonalization leads to

substantially faster computing. For example, with M = 2 components and n = 3000, the

naive method takes on average about 900s, while the method that uses diagonalization under

the null only takes about 270s on average, and the method which fully uses diagonalization

takes about 80s on average. The plots are consistent with the facts that evaluating the

likelihood and its derivatives takes O(n) operations when using diagonalization and up to

O(n3) operations otherwise.

The simulation results, along with those of the data example in the next section, can be

reproduced using code at https://github.com/koekvall/univ_vc_suppl.

5 Data Example

To illustrate the proposed methods, we apply them to a well-known dataset (Hicks and Turner,

1999, Problem 6.18). The data consist of resistance measurements (in milliohms) obtained

through a fully randomized design. Ten resistors and three operators were randomly selected.

Each operator independently measured the resistance of each resistor twice, resulting in a
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95%. The Estimates are based on 10,000 replications. The shaded regions are 95% confidence
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total of 60 observations. Both resistor and operator effects are treated as random in the

analysis. This can be motivated, for example, by thinking of the operators and resistors in the

experiment as drawn from larger populations of potential operators and resistors, respectively.

The random effects model correlations between measurement from the same operator, and

measurements from the same resistor. Because every operator measures every resistor, the

random effects are crossed. Specifically, suppose the kth measurement by operator j on

resistor i satisfies

Ỹijk = β + U1i + U2j + Eijk, (i, j, k) ∈ {1, . . . , 10} × {1, 2, 3} × {1, 2},

where β ∈ R is the population mean, U1i ∼ N(0, σ2
1) is the resistor random effect, and

U2j ∼ N(0, σ2
2) is the operator random effect. For simplicity, we estimate β using the sample

mean and apply our method to the centered responses Yijk = Ỹijk −
∑

i,j,k Ỹijk/60. That is,

we fit the model

Y ∼ N(0, σ2
1I10 ⊗ 121

T

2 ⊗ 131
T

3 + σ2
21101

T

10 ⊗ 121
T

2 ⊗ I3 + σ2
3I60), (11)

where Y is obtained by stacking the Yijk.

Maximum likelihood estimates of σ2, computed with the lme4 package (Bates et al., 2015),

are in Table 1. The table also includes the corresponding estimates of h2 and τ 2 (“total

variance”). The estimate of σ2
1, the variance of the resistor random effect, is zero. The

estimate of the operator random effect σ2
2 is about 50, which leads to an estimate of h22 of

0.554. That is, it is estimated that about 55% of the total variability is due to the operator
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Table 1: Maximum likelihood estimates of variance components and proportions of variability
for the resistor data. Standard errors based on observed information are in parentheses.

resistor operator error/total variance
σ2 0.00 (5.91) 50.0 (42.5) 40.3 (7.74)
h2 0.00 (0.0654) 0.554 (0.217) 90.3 (43.4)

Table 2: Confidence intervals for square-root variance components for the resistor data.
Wald profile bootstrap split LRT

σ1 (0.00, 3.40) (0.00, 2.80) (0.00, 2.72) (0.00, 5.43)
σ2 (0.00, 11.5) (3.55, 21.3) (1.16, 12.3) (2.38, 78.8)

random effect.

Table 2 shows confidence intervals for the random effect standard deviations σ1 and σ2;

confidence intervals for the variances can be obtained by squaring the endpoints. The table

includes three standard methods, two of which are included by default in lme4, namely profile

likelihood and bootstrap-based intervals; and the proposed method based on the split LRT.

The Wald interval is not available by default in lme4 since it is known to be unreliable, but

we nevertheless compute it for comparison. All methods give confidence intervals for σ1 that

include zero. The confidence intervals for σ2 are relatively large, likely due to the small

number of operators (three). However, only one of the intervals for σ2, the Wald interval,

includes zero. For both parameters, the proposed interval is substantially wider than the

other three. However, it is also the only one that is known to be valid.

To compute confidence intervals with the proposed method, given the small number of

observations, we use a k-fold method that can reduce the variability introduced by random

data splits (Wasserman et al., 2020). We use k = 4 folds to strike a balance between reducing

randomness and retaining sufficient data within each fold. In each iteration, one fold is used

to compute θ̂1 and the three other folds are used to compute θ̂0. Then the average of the

four test-statistics are compared to the threshold U/α (c.f. 4). Figure 6 shows graphs of the

resulting test-statistics for a range of σ1 and σ2. The confidence intervals contain the points

where the corresponding graphs are below the critical value, which is drawn as a horizontal

line. The particular realization of U was 0.742, so the critical value is 0.742/0.05 ≈ 15. For

comparison, recall the non-randomized test has critical value 1/α = 20.

We can find p-values for the null hypotheses σ2
m = 0, m ∈ {1, 2}, by finding the smallest

α ∈ (0, 1) for which the tests would reject, with the convention that the p-value is one if no

such α exists. For the randomized split LRT, the p-value for σ1 = 0 is one while the p-value
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for σ2 = 0 is zero. For comparison we used the exactRLRT function from the R package

RLRsim, which provides likelihood ratio tests for boundary points based on simulation. The

p-values for σ1 = 0 and σ2 = 0 are 0.452 and 0.00, respectively.

Because the critical value for the randomized test in general is different each time it is

implemented, p-values and widths of confidence intervals also vary from implementation to

implementation. In Figure 7 we examine the distribution of the widths of the confidence

intervals in this data example. Because the non-randomized test compares to 1/α rather than

U/α, its width is the greatest value on the horizontal axis where the density has support,

which corresponds to a realization U = 1. For example, the right plot in Fig. 7 indicates the

non-randomized CI for σ2 has width of about 90, as also seen in Fig. 6. The distribution

of the width of the randomized CI has a mode around 80, which happens to be about the

length we observed in Table 2. Using Monte Carlo, we found that the randomized CI widths

were on average 81.1% and 63.7% of the non-randomized ones, for σ1 and σ2 respectively.

Finally, since the proofs of validity of the proposed methods require a correctly specified

likelihood, we consider diagnostic plots. With G = bdiag(σ̂2
1I10, σ̂

2
2I3), we can predict the

random random effects with the best linear unbiased predictions (BLUPs) (Robinson, 1991),

i.e.,

Û = GZT(ZGZT + σ̂2
3I60)

−1Y.

Thus, we can predict E(Y | U) = ZU by ZÛ , and E = Y − ZU by Ê = Y − ZÛ . If the

predictions are accurate and the model is correct, we expect Ê to be distributed approximately

as E ∼ N(0, σ2
3In); the quantile-quantile plot in Fig.5 supports this approximation. The

right plot in Fig. 5 shows Ê plotted against the predictions ZÛ ; there are only three levels

because σ̂2
1 = 0. The variability in the Êi is perhaps slightly larger for the smallest value of

Ŷi compared to the other two, but overall the assumption that Ei is independent of ZU , with

Ei ∼ N(0, ψ3), appears serviceable.

6 Conclusions

The proposed methods lead to valid inference on variance components even in settings where

existing methods fail. In particular, to the best of our knowledge, it is the first method to be

uniformly valid in settings where heritability, or a proportion of variation more generally, is

near unity. The main drawback of the proposed methods is that they are conservative, but

that is not a problem if a test rejects or if the confidence interval is narrow enough to be

useful. Whether a confidence interval is narrow enough to be useful has to be assessed on a
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case-by-case basis by practitioners.

In many settings of interest the eigenvectors of the covariance matrix of the response

vector do not depend on the variance components. Then, the algorithms provided here lead

to much faster computing than naive ones. Further improvements may be possible with more

research. For example, it is unclear how different methods for splitting the data affect the

methods. It would be of interest to understand, for example, whether diagonalization is best

performed before or after splitting. Similarly, in settings with crossed random effects, it may

be preferable to, instead of splitting uniformly at random, balance the randomization so that

an equal number of levels of a given factor is present in both splits. Finally, there may be

room for improvements in both size and power by using estimators other than maximum

likelihood. We focused on maximum likelihood estimators because they are common and have

good large sample properties, but there are certainly many settings where we expect better

estimation is possible. For instance, penalized likelihood-based estimators can be preferable

in settings with many parameters.
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Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of statistical software, 67:1–48.

Bloom, J. S., Kotenko, I., Sadhu, M. J., Treusch, S., Albert, F. W., and Kruglyak, L. (2015).

21



Genetic interactions contribute less than additive effects to quantitative trait variation in

yeast. Nature communications, 6(1):8712.

Crainiceanu, C. M. and Ruppert, D. (2004). Likelihood ratio tests in linear mixed models

with one variance component. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 66(1):165–185.

Da, Y., Wang, C., Wang, S., and Hu, G. (2014). Mixed model methods for genomic prediction

and variance component estimation of additive and dominance effects using snp markers.

PloS one, 9(1):e87666.

Ekvall, K. O. and Bottai, M. (2025). Uniform inference in linear mixed models. arXiv,

(2507.19633).

Ekvall, K. O. and Jones, G. L. (2020). Consistent maximum likelihood estimation using subsets

with applications to multivariate mixed models. The Annals of Statistics, 48(2):932–952.

Elkantassi, S., Bellio, R., Brazzale, A. R., and Davison, A. C. (2023). Improved inference for

a boundary parameter. Canadian Journal of Statistics, 51(3):780–799.

Ghosh, S., Hastie, T., and Owen, A. B. (2022). Scalable logistic regression with crossed

random effects. Electronic Journal of Statistics, 16(2).

Goldstein, H. (2011). Multilevel statistical models. John Wiley & Sons.

Heckerman, D., Gurdasani, D., Kadie, C., Pomilla, C., Carstensen, T., Martin, H., Ekoru,

K., Nsubuga, R. N., Ssenyomo, G., Kamali, A., et al. (2016). Linear mixed model for

heritability estimation that explicitly addresses environmental variation. Proceedings of the

National Academy of Sciences, 113(27):7377–7382.

Hicks, C. R. and Turner, K. V. (1999). Fundamental concepts in the design of experiments.

Oxford University Press, New York, NY, 5 edition.

Jiang, J. (2013). The subset argument and consistency of MLE in GLMM: Answer to an

open problem and beyond. The Annals of Statistics, 41(1).

Jiang, J. (2025). Asymptotic distribution of maximum likelihood estimator in generalized

linear mixed models with crossed random effects. The Annals of Statistics, 53(3):1298–1318.

22



Jiang, J., Wand, M. P., and Ghosh, S. (2024). Precise Asymptotics for Linear Mixed Models

with Crossed Random Effects.

Kreft, I. G. and De Leeuw, J. (1998). Introducing multilevel modeling. Sage.

Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models. Journal of the Royal

Statistical Society Series B: Statistical Methodology, 58(4):619–656.

Lyu, Z., Sisson, S., and Welsh, A. (2024). Increasing dimension asymptotics for two-way

crossed mixed effect models. The Annals of Statistics, 52(6):2956–2978.

Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica,

70(2):583–601.

Papaspiliopoulos, O., Roberts, G. O., and Zanella, G. (2020). Scalable inference for crossed

random effects models. Biometrika, 107(1):25–40.

Pazokitoroudi, A., Liu, Z., Dahl, A., Zaitlen, N., Rosset, S., and Sankararaman, S. (2024). A

scalable and robust variance components method reveals insights into the architecture of

gene-environment interactions underlying complex traits. The American Journal of Human

Genetics, 111(7):1462–1480.

Ramdas, A. and Manole, T. (2023). Randomized and exchangeable improvements of markov’s,

chebyshev’s and chernoff’s inequalities. arXiv preprint arXiv:2304.02611.

Rasbash, J. and Goldstein, H. (1994). Efficient analysis of mixed hierarchical and cross-

classified random structures using a multilevel model. Journal of Educational and Behavioral

statistics, 19(4):337–350.

Robinson, G. K. (1991). That blup is a good thing: the estimation of random effects.

Statistical science, pages 15–32.

Runcie, D. E. and Crawford, L. (2019). Fast and flexible linear mixed models for genome-wide

genetics. PLoS genetics, 15(2):e1007978.

Schweiger, R., Fisher, E., Rahmani, E., Shenhav, L., Rosset, S., and Halperin, E. (2018).

Using stochastic approximation techniques to efficiently construct confidence intervals for

heritability. Journal of Computational Biology, 25(7):794–808.

23



Schweiger, R., Kaufman, S., Laaksonen, R., Kleber, M. E., März, W., Eskin, E., Rosset,

S., and Halperin, E. (2016). Fast and accurate construction of confidence intervals for

heritability. The American Journal of Human Genetics, 98(6):1181–1192.

Vitezica, Z. G., Varona, L., and Legarra, A. (2013). On the additive and dominant variance and

covariance of individuals within the genomic selection scope. Genetics, 195(4):1223–1230.

Wasserman, L., Ramdas, A., and Balakrishnan, S. (2020). Universal inference. Proceedings

of the National Academy of Sciences, 117(29):16880–16890.

Yang, J., Manolio, T. A., Pasquale, L. R., Boerwinkle, E., Caporaso, N., Cunningham,

J. M., De Andrade, M., Feenstra, B., Feingold, E., Hayes, M. G., et al. (2011). Genome

partitioning of genetic variation for complex traits using common SNPs. Nature genetics,

43(6):519–525.

Zhang, Y., Ekvall, K. O., and Molstad, A. J. (2025). Fast and reliable confidence intervals

for a variance component. Biometrika, 112(2):asaf010.

A Technical details

Proof of Theorem 1. The arguments are available in the literature (Ramdas and Manole,

2023; Wasserman et al., 2020, Theorems 1.2 and 3, respectively). Pick an arbitrary θ∗ ∈ Θ0.

By Markov’s inequality,

Pθ∗ (Tn > 1/α) ≤ αEθ∗ (Tn) ,

so the first claim follows if Eθ∗ (Tn) ≤ 1. To show the latter, note that since θ∗ ∈ Θ0 and θ̂0 is

a maximizer over that set,

Eθ∗ (Tn) = Eθ∗

{
LY(0)|Y(1)

(θ̂1)

LY(0)|Y(1)
(θ̂0)

}
≤ Eθ∗

{
LY(0)|Y(1)

(θ̂1)

LY(0)|Y(1)
(θ∗)

}
.

Thus, it suffices to show that the last expectation equals one. To that end, condition on Y(1)

and note that, since θ̂1 is measurable with respect to the σ-algebra generated by Y(1), with
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probability one,

Eθ∗

{
LY(0)|Y(1)

(θ̂1)

LY(0)|Y(1)
(θ∗)

∣∣∣∣Y(1)
}

=

∫
fθ̂1(y(0)|Y(1))
fθ∗(y(0)|Y(1))

fθ∗(y(0)|Y(1))dy(0)

=

∫
fθ̂1(y(0)|Y(1))dy(0) = 1.

Here, fθ(y(0) | Y(1)) denotes the density of the conditional distribution of Y(0) given Y(1) under

θ, evaluated at a fixed y(0) and random Y(1). Since the conditional expectation equals one, so

does the unconditional one, and that proves validity of the split likelihood ratio test.

The proof of validity of the randomized split likelihood ratio test is similar except for the

first step. Specifically, instead of using Markov’s inequality we note that by independence of

U and Tn,

Pθ∗ (Tn > U/α) = Eθ∗ {Pθ∗(U < αTn | Tn)} = Eθ∗ {min(αTn, 1)}

≤ αEθ∗ (Tn) .

Thus, validity again follows from Eθ∗ (Tn) ≤ 1.

Finally, the claim about power is immediate from the fact that the event {αTn > 1} is a

subset of the event {αTn > U} since U has support (0, 1).

Proof of Theorem 2. First note that, by symmetry, each Km has an eigendecomposition

Km = OmΛmO
T
m, where Λm = diag(λm1, . . . , λmn). Since the conclusion is obvious if Km = 0

for all m, suppose not. Pick arbitrary Km and Kℓ, m ̸= ℓ, such that λℓk ̸= 0 is an element of

Λℓ and oℓk the corresponding column of Oℓ. Thus, Kℓoℓk = λℓkoℓk. Left-multiplying by Km

and using KmKℓ = 0 leads to

0 = KmKℓoℓk = λℓkKmoℓk,

so oℓk is an eigenvector of Km, corresponding to the eigenvalue zero. Thus, oℓk is orthogonal

to every column of Om corresponding to a nonzero eigenvalue of Km. Take now every vector

that, for some m ∈ {1, . . . ,m}, is a column of Om corresponding to a nonzero eigenvalue of

Km, say

O = {omk : λmk ̸= 0 for some m ∈ {1, . . . ,M} and k ∈ {1, . . . , n}}.

This set is orthonormal. Indeed, we already showed that any two such vectors from different
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Om are orthogonal, and if they are from the same Om they are orthogonal by construction.

Because O ⊆ Rn is orthonormal, it contains at most q ≤ n vectors. Let these vectors be

the leading q columns of O (in any order), and take the remaining n− q vectors to be any

orthonormal basis for the orthogonal complement of the span of O. Note the last n − q

vectors are in the null space of every Km, m ∈ {1, . . . ,M} by construction of O. Now (8)

holds upon possibly reordering elements in Λm, m ∈ {1, . . . ,M}.
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