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A Proofs

Proof of Lemma 1. Define a sequence (g,) of functions by g¢,(¢) = Py{¢ € C,(«)}, and
define the constant function g(¢) = 1 — a. By the equivalence of compact and continuous
convergence (Remmert} |1991, p.98), sup,cy |9.(%) — g(1)| — 0 for every compact A C P if
and only if, for every convergent sequence (¢,,) with limit ¢y € P, it holds that g,(v,) —

g<w0) =1-oq. [l

Proof of Lemma 2. Pick an arbitrary « and sequence (1) convergent in P, and observe
Py, {tn € Cula)} = Py {Tu(thn) < F(1 —a)} = Fy(F~ (1 - ) = F(F-(1 —a)) =1 -«
The last equality uses that the assumed continuity of F' ensures F'(t) = 1 — « for some t € R.

Lemma 1 in the main text completes the proof. O

Proof of Proposition 1. For every n, nM, /(1 +¢,) ~ x2. Thus, N,, = M,,/(1+¢,) — 1 in

probability under 1,, by the law of large numbers, and W* (v,,) = (n/2)"2{ M, /(1+4),)—1} —

Wy in distribution by the central limit theorem, which proves Equation (6) in the main text.
The Wald test-statistic is

w2V — ) (n/2)'2 (M, = 1) —(n/2)"?4,
W () = T —max( o, T 1ro )




The first argument to the maximum is W,%(1/,,), so Equation (6) in the main text, continuity
of (z1,x9) — max(xy,x2), and the continuous mapping theorem give Equation (7) in the
main text.

The likelihood ratio statistic is

— ; M, 14+,

= —n{log(Ly) + Na(1/L, — 1)},

where L, = (1 +4,)/(1 + 1,). Note that L, — 1 = (¢, — t,)/(1 + 1) = max{N, —
1, =, /(1 4+ 1,)}, which tends to 0 in probability under v, since N,, — 1 in probability and
—, /(1 4+ 1,) < 0. Thus, we get in probability, by second order Taylor expansion around 1,

Ty (n) = =n{(Ln = 1) = (Ly = 1)*/2 = Nu(Ln = 1) + Nu(Ln = 1)*} + 0p(n| Ly, — 1)
= n(Ly — 1)(N, — 1) — n(N, — 1/2)(L, — 1)* + 0,(n| L, — 1%
=n(L, —1)(N, — 1) — (n/2)(L,, — 1)* = n(N,, — 1)(L,, — 1)* + 0,(n|L,, — 1|?).

The first term is

(L = D)(No = 1) = 2{(n/2)? max(Ny, — 1, ¢/ (1 + ) ) H(n/2) /2(N,, = 1)},

which, by Equations (6)—(7) in the main text, and the continuous mapping theorem, tends in
distribution to 2 max(W;, —a2~/2)W,. By similar arguments, the term (n/2)(L,, — 1)? tends
in distribution to max(W;, —a27/2)2, and the remaining terms tend to zero. This establishes

Equation (8) in the main text. O
Proof of Lemma 3. The first claim is due to E(R" A1 R) = E{tr(RR"A;)} = tr{E(RR")A,} =
tr(A;). The second follows from the fact that, for any ¢ € {1,...,n},
E(R,R"A|R) Z Z (RiR; Ri[A1];) = [A1]4E(RS) = 0.
7=1 k=1

The last equality uses E(R?) = 0 and the previous one uses E(R) = 0 and independence of



the elements of R. The final claim is established by writing E(R"A; RR" Ay R) as

ZZZZ i [ Ao E(R: Ry Ry 1)

zlglklll

= Z u AQ u R4 "’ ZZ u AQ k:kE Rsz)

1=1 k#i
+ ZZ zg AQ 1_7 R2 + ZZ 'Lj A2 ]Z )E(Ri)
=1 j#i 1=1 j#i
— E(RY) tr(A; 0 Ay) +ZZ uAQkk"‘QZZ il As]iy
i=1 ki i=1 j#

= E(Rf) tI‘(Al o} AQ) + {tI‘(Al) tI‘(AQ) — tI‘(Al e} AQ)} + 2{tr(A1A2) - tI‘(Al e} AQ)}
= {E(R}) — 3} tr(A; o Ay) + 2tr(A; Ay) + tr(A;) tr(Ay),

where o denotes elementwise product. O

Proof of Theorem 1. A block diagonal matrix is positive definite if and only if all of its
diagonal blocks are. Under 6, R = X~'/2(Y — X3) has mean zero and identity covariance
martrix, so the covariance matrix of S(3) = X™X (Y — X3) is X™S 71X, which establishes
Z(B;%). Because X is positive definite for all §, XTX 71X is positive definite if and only if X

has full column rank. Next, for any v € R",

VT = 330D e A A ()} = S (Z vz-Aiw)) = AW 9

i=1 j=1

where

Av,9) = ZviAi(¢) = S() 22 (0) D)2

Since (1)) is positive definite for every 60, ||A(v,v)||r = 0 if and only if ¥(v) = 0, which
completes the proof. O

Proof of Corollary 1. It suffices to verify Equation (12) in the main text. Pick an abitrary
veS Ifv. #0, then ZU(v)Z" + v,.1,, # 0 since v, I, has rank n while —ZW¥(v)Z" has
rank at most ¢ < n, so they cannot be equal.

If instead v, = 0, then suppose for contradiction ZW(v)Z" = 0. Then left- and right-
multiplying that identity by Z™ and Z, respectively, gives Z"ZV (v)Z"Z = 0. But 277 is



positive definite since Z has full column rank, so left- and right-multiplying the latest identity
by (Z*Z)~! gives ¥(v) = 0, which can only happen if v_, = 0. Thus, since also v, = 0, we

have v = 0, which contradicts v € S"!. O

Proof of Lemma 4. First,

lYTE—U?A(@, Y)Y — %tr {A(5,9)}.

VW) = 7S() =

Let Ay, ..., A, denote the eigenvalues of A(?,1). Then, by orthogonal invariance of the multi-
variate normal distribution, the right-hand side in the last display has the same distribution
as (1/2) >°0, \i(W2 — 1), where the WW; are independent standard normal. Theorem 1(a) of
Zhang (2005)) therefore gives, for any ¢t € R,

where A = maxeq1, oy A7/ Doy A7 = a(0,1)* and

..... 1=1""

RS /P ) SR ) >0 V) LN o ¥P YA
D PR M AN 2 miaieqs, A2

which completes the proof. O

Proof of Lemma 5. For any ¢ € P, by absolute homogeneity of norms, a(v,v) = a(v/||7]|, ) <
a since (0/||9]]) € S"!. The conclusion now follows from the right-hand side of Equation (15)

in the main text being increasing in a on (0,871/2). O

Proof of Theorem 2. The claim about convergence when (3, = 0 is almost immediate from
Lemma 5 in the main text. Indeed, the lemma says the density of vXW?(¢),,) tends to the
standard normal density as n — oo since a, — 0. Thus, Scheffé’s theorem (Billingsley, 1995,
Theorem 16.12) says vXW2 (1, tends to a standard normal in total variation, and hence in
distribution.

It remains to show the claim when (3, is unknown. Partition u, = [w,, v,|" with w,, € RP»
and let R, = 251/2(}/ — Xf,). Then, since Z,,(0,) is block diagonal with leading block



In(ﬁna ¢n) € an XPn and trailing blOCk In(wn) c RTnXT‘n’

UR W (0n) = WL (Ba; ) 72 S0(Bui thn) + 0 W3 ()
1 1
- wzzn(ﬁm wn)_l/zXTE;I/an + §R2An<6na ¢n)Rn - 5 tr{An(ﬁna 1%)}

1 1
=w, R, + §R2An(f}n, Un) Ry — 5 tr{ A, (0n, ¥n)}

where @, = Sn 2 XT,(Bn; thn) V2w, = SV2X (XS LX) 2w, and R, ~ N(0, I,,) under
0,. By the subsequence principle (Billingsley| 1999, Theorem 2.6), it suffices to show every
subsequence has a further subsequence along which the quantity in the last display is
asymptotically standard normal. Thus, since [|v,|| < 1, we may by the Bolzano—Weierstrass
property assume ||v,|| — v, € [0,1]. If v, = 0, then u?W(6,,) = IR, + 0,(1) = N(0,1) in
distribution under 6,, by Slutsky’s theorem since ||, || = ||Jw,| — 1.

If instead v* > 0, then for large enough n, ||v,|| > 0, and hence ¥, = T, (¢,)~/?v # 0.
Here, we used that a(iy,,v) < @, < 8 /2 implies a(1,,v) is defined for all v € S™', so
T, (1) is positive definite by the discussion preceding the definition of a(v,v). Now let
U, € R™*™ be an orthogonal matrix with eigenvectors of A, (0,,,) as columns, and let
I, = diag(Vn1, - - -, 7mn) be a matrix with the corresponding eigenvalues, n’ > 1 of which
are non-zero since A, (?,1) is symmetric and not identically zero. Suppose without loss of
generality the eigenvalues are sorted so that |y,1] >« > |yun|. By orthogonal invariance of
the multivariate standard normal distribution, U, R,, has the same distribution as R,,. Thus,

with w,, = U, w,, the right-hand side in the last display equation has the same distribution as
- 1 B 1 -
w, UR,, + §RZUTAn(vn, V) Un R, — 5 tr{U, Ap(0n, 1)U}

n - 1 n 1 n
= ; Wi i + B ; Riﬂm’ 3 Zz:; Vni

n n
_ 1 9 B
= | Z Wi i + B Z Yri(Re; 4 2Wpi R [ Vi — 1)
i=n/+1 =1
~ 1 - - 2 92, 9

Observe the first and second sum are independent because the elements of R,, are, the first sum
is normally distributed with mean zero, and the second sum is a weighted sum of independent

noncentral chi-squared random variables, with respective noncentrality parameters w,;/Vn,



i €{l,...,n'}; centered to have mean zero. Let hy = >"" . w2, be the variance of the first

sum. Using that R,; and R?, are uncorrelated, one gets that the variance of the second sum
is ky =271 Z:il(%%z + 2wy;).

By construction, h? + k2 = 1, so we may again pass to a subsequence and assume
k, — k. € [0,1]. If k., = 0, convergence follows as in the case where v, = 0. Suppose
lastly that k, > 0. Then Theorem 2 of |Zhang| (2005]) says the second sum is asymptotically
normal with mean zero and variance k* if 72,/ Z;il 72, — 0. But that is equivalent to
a(v,9n)? = ||An(0, V) |12/ | An (0, 00)||% — 0, which follows from the assumption @, — 0.
Thus, using independence of the first and second sum in the last display, they converge jointly
to a bivariate normal with mean zero and covariance matrix diag(1 — k2, k?). Thus, their
sum is asymptotically standard normal by the continuous mapping theorem, which completes
the proof. n

Proof of Lemma 6. Submultiplicativity of the spectral norm gives

1A, )1l < 12@)IPIS)] = [120) )]

Moreover, using the minimax principle for eigenvalues of symmetric matrices (Bhatia, 2012,
Corollary I11.1.2), with e; € R™ denoting the jth standard basis vector,

JA@, Bl = tr{S) 2@ Ew) " Ew)S(w) )
—ZeTz ) (0) () ) () e

> Ymin{ D(1) 1}2 XX (V) TV (0) S (0) B (v) " 2.

Using cyclical invariance of the trace, that is, of the matrices in the sum in the last line, and

then the minimax principle again, gives that ||A(v,)[|% is no smaller than

Ynin{S() T tr{S(0)*} = Y { E() T PIE@)E = [E@)I I )1[F-
Combining this lower bound with the upper bound on ||A(v, )| completes the proof. [

Proof of Theorem 3. Let us first suppose p = 0 and consider the special case Z; = Z; for
all . That is, observations are independent and identically distributed, which substantially

simplifies the proof. To apply Lemma 6, note || X(¢)|| = maxi<i<m [|2:(¢)|], where 3;(¢) =



Z;Vy () ZF + 4, 1,,. Thus, by the triangle inequality and submultiplicativity of the spectral
norm, [|[E(9)|] < N Z|P[W1()] + ¥ < 2| Wi ()] + . Moreover, [[W1 () < [[T1(¥)[|F <
2||¢r_||? since vech(W¥,) = ¢_,. Thus, we have established ||Z()|| < 2Y2¢y ¢, || + 1, and

hence by using [|Z(¢) 7! = 1/ymin{S(¥)} < 1/¢y,
IZ@) IS < 22 eally—r fior |l +1 < 2 %o (1 + [ /)
We next show that, when Z; = Z; for all i, for any v € "1,
IS@)I/IZ@)]r < m™2

By block-diagonality, [S(0)]| = [S1(0)| < [S1(@)lle and [S@)[3 = S0, [Si(w)3 =
m|| X1 (v)]|%, so [|2(v)||F > m?||X1(v)||r. Thus, the bound is established if || X (v)|| # 0 for
all v € S""1. But by block-diagonality, that is equivalent to ||3(v)||z > 0, which holds by
Corollary 1 since Z = bdiag(Z, ..., Zy,) has full column rank. Indeed, v (Z;Z;) > 0 for
all 7 implies each Z; has full column rank.

Now suppose the Z; need not be the same, but still p = 0. The bound on || ()~ H|[|Z(¥)]|
still holds because we did not use the assumption that Z; = Z;, so it suffices to bound
12(0)]|/[|X(v)||r- To that end, note

Tu]).

Moreover, using the triangle inequality, submultiplicativity of the spectral norm, |v.| < 1, and
19, ()2 < 9 (0)[2 < 20l]? < 2, we get |20, (u) 27 + v, L, || < 22 Zi[2 +1 < 226, +1.
Thus, [|S(v)]| < 14 2Y2¢,.

Next, [£()]3 = X0, 1200 (0)ZF + v,

term in the sum satisfies, with C; = ZZ,,

()] = o s 12004 (0)2F + 0,1,

2. By cyclic invariance of the trace, the ith

= ‘51"{6'1.1/2\111(U)C'il/2 + 2UTCZ-1/2\I/1(U)CZ~1/2 + 021} + v (n — q1)

= |G}, (0) O} v, I |3 4 02 (0 — qu).

To lower bound this, we use, in order, the triangle inequality, Ymin(Ci) > ¢ ', ||¥1(v)||% >



|lv_.]|*> =1 — 2%, and Jensen’s inequality applied to the concave square-root to write

1CH20, (0)C 2 + vy le > G201 (0)CL 7 = o lar?
> 1 ()17 — ol
> ;' (1 =) = Ju gy
> " 272 (1 = o) - [ogly”?
= 272"~ Jul(cg" + (20) )}

1/2

Thus, if Jo,| < 276 (60 + (20)Y2) 7" = 1/(2 + 2(801)Y?), say; then ||C}/* W, (v)C}/? +

]

vy ||F > 1/(c28Y2) and, therefore, ||S(v)||p > m'/2/(c,8%/2). If on the other hand |v,| >
1/(2 + c2(8¢1)"/?), then
IZ@)llr 2 [o|(n —mai)'* = m2(7— )2/ (2+ e (8a:) %) = m'P(e; = 1)V /(24 28'7).
Consequently,

IS(0)[|F > m?min{1/(ca8"2), (c1 — 1)2/(2 + c28"/%)} = m!/?é,
where ¢3 is defined by the last equality. In summary, Lemma 6 gives

a(v, ) < (1+2Y%2)2" 2eos m (L |-, /),

which upon taking, for example, c3 = (1 + 2/2¢;)?¢; ' completes the case p = 0.

Suppose finally that p > 0 and let X(v) = V™S (v)V. Observe |S(v)|| = [|[V*E(v)V]| <
IVIPIZ()] = [|2(v)]| by submultiplicativity of the spectral norm. Moreover, by H.1.h. of
Marshall et al. (2011} p.341) and the claim following it,

IS(0)lI7 = Z AVVEE()VVIX(0)} > Z AHE@)VVEE() } A2 (VV),

which, since V'V has 1 and 0 as eigenvalues with respective multiplicities n — p and p, equals
Y et MIZ)VVTE ()} = tr{E(0)VVTE(v)} = 27 M{E(v)VVTS(v)}. For the first of
these terms, cyclical invariance of the trace and H.1.h. of Marshall et al. (2011) gives

t{E@VVTE@w)} = af{Z@)PVVT} 2 Y {0 = [Z0)]F - ZA {(v)

Jj=p+1



Thus, since | Y77 A{Z(0)VVE(v)}] < p||Z(0)VVE(v)|| < p|[E(v)[|* by submultiplicativ-

ity of the spectral norm, we find

IZ@)1% = IZ@)[F - 2plIZ ()]
2 m [min{62_28_1’ (Cl _ 1)_1(2 + 0281/2)_1} _ 204<1 + 0221/2)2j|

= Mmcy,

where ¢4, defined by the last equality, is strictly positive for small enough ¢4. Thus, by
Lemma 6, a(v,v) < (1+ 2Y2¢5)2Y2¢58,*m=12(1 + |[¢o_, /¥o,||), so we are done upon taking,

for example, c3 = (1 + 21/202)2621/2, -

Proof of Corollary 3. By Lemmas 3 and 4, it suffices to consider an arbitrary sequence (v,)
converging to some vy € P and show that, under that sequence, T,f (1) has as asymptotic chi-
squared distribution with  degrees of freedom. For this, it suffices that W2 (¢,,) — N(0, I,.) in
distribution. This, in turn, follows from the Cramér—Wold theorem and the second conclusion
of Corollary 2 if we verify its condition (v). To that end, note ¢y € P implies ¢o, > 0,
and hence 1, > 0 for all large enough n. Thus, since ||¢)_,.|| is bounded due to v, being
convergent, [|[¢_,||/¥n = O(1) = o(m'/?), so the proof is completed. O

Proof of Theorem 4. Let Q; = I,; — P; and define PJQ the same way as P; but with @); in
place of I,,,, j € {1,...,r—1}. Let also P, = PL®---® P,_; = 1,1} /n. Then P; =P, +7DJQ
for j € {1,...,r — 1} and, consequently,

r—1
j=1
r—1 r—1
= Z(wr + w]n(]))’P]Q + 7)1" (1/}7“ + ijn(j)> + wr<In - P)a (1)
Jj=1 J=1

where P = P, —I—Z;: PJQ. Here, the last step uses that P,PJQ =0 for every j € {1,...,r—1},
and PiQ PJQ = 0 for i # j, both of which follow from the mixed-product property (Magnus
and Neudecker, 2002, Equation (4), p.32) and Q;P; =0 for j € {1,...,r — 1}. Thus, P is
a projection matrix satisfying (I, — P)PJQ =0forje{l,...,r—1} and (I, — P)P. = 0.
Consequently, (1)) gives a spectral decomposition of ¥ where each of the r + 1 addends is a

projection onto an eigenspace, scaled by the corresponding eigenvalue.



Recalling the definition A; = X7Y2(9%/0;) %712, we get

A(v,) = S() S (0)S(w) 2

r— r—1
. Uy + vjn(J) 73 P U + Zj:1 AKO)) i Ur
— ) + P Ut X ng ) Y

(I, —P).

Write s7,...,s2,, for the squared eigenvalues of A(U, 1), ordered as in the last display. That

. . r—1

is, s7 = (vr + vin)?/ (W + Ying)? 5 € {1, — 1} 87 = (v + X250 vne)?/ (U +
Z;j ving))?; and sz, = v2 /Y2, Thus, ||A(v, )||2 = max{s},..., s> ;}. If this maximum
is 52 for some j € {1,...,r — 1}, then since [|A(v,v)|} > s?|PP||% = s2(n; — 1), we get

a(v,9)? < 1/(n; — 1), where we used that, for a projection matrix, its squared Frobenius
norm is its rank. Similarly, if ||A(v,¥)||* = s2,4, then a(v,¢)* < 1/||I, — P.||% = 1/n. It
remains only to consider the case where ||A(v,9)||* = s2. This case is more complicated

because ||P,||r = 1.

Since the squared Frobenius norm of a symmetric matrix is the sum of squared eigenvalues,

[A(v, )7 is

r—1 r—1 2
(v + v Up D i VN 2
S Lol gy (D )
j=1 ¢T + ,QZ)] ) wr + Zj:l ¢]n(]) T
Since the 1; are all non-negative, the denominator for each ratio in the last display is
upper bounded by (1, + Z;;} ¥jn(;))?, which is also the denominator of s2. Thus, when

| A(v,)||* = s2, a(v,)? is upper bounded by

79

(or + Z;ii vin '))2
r—1
> i (vr Hong)?(ng — 1) + (v + 2202 ving))? + vFn

Let b; = v, +vjng), j € {1,...,7r—1}, and b, = v,. Then the last display is a ratio of quadratic
forms in b = [by, ..., b,|". Specifically, since v, —&-Z;;} VNG = Z;;}(w +njyv;) — (r—2)v, =
S isiby = (r=2)by, it is
(b™u)?  bTuub
b*Db+ (b™u)2  b*(D + uu®)b’

where u = [1,...,1,—(r — 2)]" and D = diag(n; — 1,...,n,—; — 1,7). Since D is positive

10



definite, we can let b = (D + uu™)/?b and get by Cauchy Schwartz’s inequality that

b™ (D + uu™) "V 2uu™ (D 4+ uu™) 2
1]|2

< u"(D + uu™) " u.

Using the Sherman-Morrison formula, u™(D+uu™) v = v" D 'u—(u" D u)?(14+u™ D tu) ™t =
u"D7'u{l — (WD) (1 + u" D )™} <u'D7lu = Z;:(n] — 1)~ + (r — 2)?/n, which
completes the proof of the first claim. We note the last inequality is asymptotically strict in
the sense that when u™D~'u tends to zero, the left-hand side is u™ D~ u(1 + o(1)).

For the second claim, let %(v) = V'S (v)V and A(v, ) = 2(1) /22 (v)S(1) "2, Observe
that P, = 1,1} /n = I, — VV™. Therefore, by ,

r—1

S =) (W + ) VPPV + 4,V (I, = P)V
j=1
r—1 r—1
=N "W + U VPRV + Ly — Y 0, VIPIV
J=1 j=1

r—1
=Y VPRV + 1,1,
j=1

Now VTPPVV™PPY = VIPR(L, — P,)PPV = VIPEP2V, which is zero if i # j and
VTPiQ V otherwise. That is, the leading r — 1 terms in the sum in last display are projection

matrices onto orthogonal spaces. Therefore,

r—1
S =) (W + ) ) VPPV + 4y (Inoy — P),

Jj=1

where P = Z;;i VTPJ-Q V = VTPV is also a projection matrix. Now by arguments similar to

those for the case with V = 1I,,,
(v, ¥)? < max (|11 = P2 IV PEVIE, .. VP V)

<max((n—1)""(n; —2)7" ..., (n,m1 —2)71)

which completes the proof.
O

Proof of Corollary 4. Recall n = n(k) depends on k but let us suppress that for simplicity.

11
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Figure A: Quantiles of test-statistics evaluated at a true ¢» € R* that is near the boundary.
For i € {1,...,50}, Y; = Z,U; + E;, where U; ~ N(0,¥;), ¥; € R**? has diagonal elements
Y =13 = 1073 and off-diagonal ¢, = 0, and E; ~ N(0,4), ¥4 = 10. Elements of Z; € R°*?
were drawn prior to simulations from a Bernoulli distribution with mean 1/2. Empirical
quantiles based on 10 000 replications.

Suppose for contradiction that

lim sup sup ’P¢{w € Ca)} - (1 - oz)‘ > 0.
k—oo EeP

Then for some € > 0, sup,cp ’P¢{w e C(a)} — (1 — 04)) > ¢ for infinitely many k. For

each such k, we can pick a i, € P such that ‘Pwk{wk e Co(a)} — (1 —a)| > €/2, say.
k

But Theorem 4 says that as k — oo and n*. — oo, for any v € S"! the density of
V"W (1) tends to the standard normal density. Therefore, as argued in the proof of
Theorem 2, W3(¢) — N(0,1,) in distribution and T () — x? in distribution. Thus,

Py, {0 € C3(a)} = Py {T5(¥1) < ¢r1-a} — 1 — a, which is the desired contradiction. [

B Additional numerical results

Figure [A] is like Figure 1 in the main text but with error variance ¢, = 10 instead of
1y = 1. Notably, though we have verified there are some small differences, the plots are
almost identical. These results suggest that, at least in this setting, the conclusions are not

particularly sensitive to the error variance.

12
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Figure B: Coverage probabilities with independent clusters and independent random effects,
for different random effect variances (horizontal axes). The settings are (m,n;,p) equal to

(500, 3,2) (left plot), (20,3,3) (middle plot), and (200, 3,100) (right plot).

Figure [B] shows results from a simulation with the same settings as those for Figure 2 in
the main text, except that, here, the random effects’ covariance matrix is Uy = diag(1, ¥3),
with ¥ = 13 indicated on the horizontal axes. That is, the true covariance ¥y = 0 and
the random effects are therefore independent. When m = 500 (left plot), the likelihood
ratio and Wald regions are conservative near the boundary while both score-based methods
have approximately nominal coverage probabilities. Further from the boundary, the Wald
confidence regions are invalid while the other three have approximately nominal coverage
probability. When m = 20 (middle plot), the Wald region is clearly invalid for all considered
settings; the likelihood ratio region is conservative. The profile and restricted score regions
have coverage probabilities above and below nominal, respectively. However, both are close to
nominal for all considered parameter values. With many predictors (right plot), the likelihood
ratio and Wald regions are conservative near the boundary. The restricted score-based region
has approximately correct coverage. The profile score-based region is omitted because its
coverage is so far below nominal that it would obscure the comparisons of the other methods.

Figure [C] shows results from a simulation with the same settings as that for Figure [B]
except that in the middle and right plot i3 # ;. The left plot, which is the same as
the left plot in Figure [B] is included for comparison. The middle plot shows that when
13 is on the boundary, moving 1, away from the boundary has only a small effect on the
coverage probabilities of likelihood ratio and Wald regions, as expected. Conversely, the right

plot shows that the coverage probabilities of likelihood ratio and Wald regions are closer to
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Figure C: Coverage probabilities with independent clusters and independent random effects
with (m,n;, p) = (500, 3,2). The random effect variance not on the horizontal axis is ¥5 = 1
(left plot), 13 = 0 (middle plot), or ¢35 = 0.3 (right plot).

nominal when only one of ¢; and 3 are on the boundary. As before, the score-based regions
have approximately nominal coverage probabilities in all settings.

Figure [D| shows results from a simulation with the same settings as that for Figure 3 in
the main text, except that in the right plot ny = 20 and n, = 80. That is, the total number
of observations is still n = 1600, but the observations are unbalanced. The left plot, which
is included for comparison, is the same as the left plot in Figure 3 of the main text. The
theory suggests min; n; is an important quantity for the asymptotic approximations, and this
is reflected in the coverage probabilities here. For example, in the right plot, the coverage
issues for the likelihood ratio region are present for a wider range of 1); = 1), than in the
left plot, where n; = ny = 40. Similarly, the coverage issues for the Wald region are more
pronounced in the right plot. The score-based regions have approximately nominal coverage

probabilities for all parameter values in both settings.

C Practical considerations

We make a few observations that can help implement the proposed methods. Recall B =
B) = {X™S() L X} XTE(Y) Y is a partial maximizer of £(5,1)) in B and define the
profile likelihood ¢7(v)) = ¢(5,1). Then, the restricted log-likelihood can also be written
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Figure D: Coverage probabilities with crossed, independent random effects, for different
random effect variances ¥, = 1, (horizontal axes). The settings are (nj,nq,p) equal to

(40, 40,2) (left plot) and (20,80, 2) (right plot).
(Harville, 1974), up to a constant,

() = (°(9) ~ 3 log | X 5() ' X]

- _% {]og 1S()| +1og | XTE() X |+ (Y — XB)"S () (Y - XB)} -

By well-known envelope theorems (see for example Milgrom and Segal, 2002)), the profile
score satisfies ST () = 9P (¥) /oY = S{B(v),1}, the usual score evaluated at the par-
tial maximizer in 3. Thus, the restricted score is, for j < r, SB(y;) = S{B(w), Y} —
(1/2) tr[{ X™2(¢) ' X} XS () ZH,; 275 (1) X, and similarly for j = 7.

The profile score is straightforward to compute using the expressions for the usual score
in the main text. Expressions involving ¥(¢))~! can usually be computed efficiently by using
the Woodbury identity to get X1 =11, — 2 Z (1, + ¢, "W Z"Z)" "W Z". Using this, the
additional term in the restricted score can also be computed efficiently. Similar arguments
apply to the expression for the Fisher information given in the main text. For example, to

compute tr(A4;A;) for i,j < r, note
tr(AA;) = to(X7V2ZH,ZTS T ZH, 27N Y2 = (2N ZH, 278 2 H)

and Z™Y71Z, which is shared for all 4, j < 7, can be computed efficiently using the Woodbury

identity above.
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