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A Proofs

Proof of Lemma 1. Define a sequence (gn) of functions by gn(ψ) = Pψ{ψ ∈ Cn(α)}, and
define the constant function g(ψ) = 1− α. By the equivalence of compact and continuous

convergence (Remmert, 1991, p.98), supψ∈A |gn(ψ)− g(ψ)| → 0 for every compact A ⊆ P if

and only if, for every convergent sequence (ψn) with limit ψ0 ∈ P, it holds that gn(ψn) →
g(ψ0) = 1− α.

Proof of Lemma 2. Pick an arbitrary α and sequence (ψn) convergent in P, and observe

Pψn{ψn ∈ Cn(α)} = Pψn{Tn(ψn) ≤ F−(1− α)} = Fn(F
−(1− α)) → F (F−(1− α)) = 1− α.

The last equality uses that the assumed continuity of F ensures F (t) = 1− α for some t ∈ R.

Lemma 1 in the main text completes the proof.

Proof of Proposition 1. For every n, nMn/(1 + ψn) ∼ χ2
n. Thus, Nn =Mn/(1 + ψn) → 1 in

probability under ψn by the law of large numbers, andW S
n (ψn) = (n/2)1/2{Mn/(1+ψn)−1} →

W1 in distribution by the central limit theorem, which proves Equation (6) in the main text.

The Wald test-statistic is

WW
n (ψn) =

(n/2)1/2(ψ̂n − ψn)

1 + ψn
= max

(
(n/2)1/2(Mn − 1)

1 + ψn
,
−(n/2)1/2ψn

1 + ψn

)
.
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The first argument to the maximum is W S
n (ψn), so Equation (6) in the main text, continuity

of (x1, x2) 7→ max(x1, x2), and the continuous mapping theorem give Equation (7) in the

main text.

The likelihood ratio statistic is

TLn (ψn) = −n
{
log(1 + ψ̂n)− log(1 + ψn) +

Mn

1 + ψn

(
1 + ψn

1 + ψ̂n
− 1

)}
= −n{log(Ln) +Nn(1/Ln − 1)},

where Ln = (1 + ψ̂n)/(1 + ψn). Note that Ln − 1 = (ψ̂n − ψn)/(1 + ψn) = max{Nn −
1,−ψn/(1 + ψn)}, which tends to 0 in probability under ψn since Nn → 1 in probability and

−ψn/(1 + ψn) ≤ 0. Thus, we get in probability, by second order Taylor expansion around 1,

TLn (ψn) = −n{(Ln − 1)− (Ln − 1)2/2−Nn(Ln − 1) +Nn(Ln − 1)2}+ op(n|Ln − 1|2)

= n(Ln − 1)(Nn − 1)− n(Nn − 1/2)(Ln − 1)2 + op(n|Ln − 1|2)

= n(Ln − 1)(Nn − 1)− (n/2)(Ln − 1)2 − n(Nn − 1)(Ln − 1)2 + op(n|Ln − 1|2).

The first term is

n(Ln − 1)(Nn − 1) = 2{(n/2)1/2max(Nn − 1,−ψn/(1 + ψn))}{(n/2)1/2(Nn − 1)},

which, by Equations (6)–(7) in the main text, and the continuous mapping theorem, tends in

distribution to 2max(W1,−a2−1/2)W1. By similar arguments, the term (n/2)(Ln − 1)2 tends

in distribution to max(W1,−a2−1/2)2, and the remaining terms tend to zero. This establishes

Equation (8) in the main text.

Proof of Lemma 3. The first claim is due to E(RTA1R) = E{tr(RRTA1)} = tr{E(RRT)A1} =

tr(A1). The second follows from the fact that, for any i ∈ {1, . . . , n},

E(RiR
TA1R) =

n∑
j=1

n∑
k=1

E(RiRjRk[A1]jk) = [A1]iiE(R
3
i ) = 0.

The last equality uses E(R3
i ) = 0 and the previous one uses E(R) = 0 and independence of
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the elements of R. The final claim is established by writing E(RTA1RR
TA2R) as

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

[A1]ij[A2]klE(RiRjRkRl)

=
n∑
i=1

[A1]ii[A2]iiE(R
4
i ) +

n∑
i=1

∑
k ̸=i

[A1]ii[A2]kkE(R
2
iR

2
k)

+
n∑
i=1

∑
j ̸=i

[A1]ij[A2]ijE(R
2
i )E(R

2
j ) +

n∑
i=1

∑
j ̸=i

[A1]ij[A2]jiE(R
2
i )E(R

2
j )

= E(R4
i ) tr(A1 ◦ A2) +

n∑
i=1

∑
k ̸=i

[A1]ii[A2]kk + 2
n∑
i=1

∑
j ̸=i

[A1]ij[A2]ij

= E(R4
i ) tr(A1 ◦ A2) + {tr(A1) tr(A2)− tr(A1 ◦ A2)}+ 2{tr(A1A2)− tr(A1 ◦ A2)}

= {E(R4
i )− 3} tr(A1 ◦ A2) + 2 tr(A1A2) + tr(A1) tr(A2),

where ◦ denotes elementwise product.

Proof of Theorem 1. A block diagonal matrix is positive definite if and only if all of its

diagonal blocks are. Under θ, R = Σ−1/2(Y −Xβ) has mean zero and identity covariance

matrix, so the covariance matrix of S(β) = XTΣ−1(Y −Xβ) is XTΣ−1X, which establishes

I(β;ψ). Because Σ is positive definite for all θ, XTΣ−1X is positive definite if and only if X

has full column rank. Next, for any v ∈ Rr,

vTI(ψ)v =
1

2

r∑
i=1

r∑
j=1

vivj tr{Ai(ψ)Aj(ψ)} =
1

2
tr


(

r∑
i=1

viAi(ψ)

)2
 =

1

2
∥A(v, ψ)∥2F ,

where

A(v, ψ) =
r∑
i=1

viAi(ψ) = Σ(ψ)−1/2Σ(v)Σ(ψ)−1/2.

Since Σ(ψ) is positive definite for every θ, ∥A(v, ψ)∥F = 0 if and only if Σ(v) = 0, which

completes the proof.

Proof of Corollary 1. It suffices to verify Equation (12) in the main text. Pick an abitrary

v ∈ Sr−1. If vr ̸= 0, then ZΨ(v)ZT + vrIn ̸= 0 since vrIn has rank n while −ZΨ(v)ZT has

rank at most q < n, so they cannot be equal.

If instead vr = 0, then suppose for contradiction ZΨ(v)ZT = 0. Then left- and right-

multiplying that identity by ZT and Z, respectively, gives ZTZΨ(v)ZTZ = 0. But ZTZ is
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positive definite since Z has full column rank, so left- and right-multiplying the latest identity

by (ZTZ)−1 gives Ψ(v) = 0, which can only happen if v−r = 0. Thus, since also vr = 0, we

have v = 0, which contradicts v ∈ Sr−1.

Proof of Lemma 4. First,

vTW S(ψ) = ṽTS(ψ) =
1

2
Y TΣ−1/2A(ṽ, ψ)Σ−1/2Y − 1

2
tr {A(ṽ, ψ)} .

Let λ1, . . . , λn denote the eigenvalues of A(ṽ, ψ). Then, by orthogonal invariance of the multi-

variate normal distribution, the right-hand side in the last display has the same distribution

as (1/2)
∑n

i=1 λi(W
2
i − 1), where the Wi are independent standard normal. Theorem 1(a) of

Zhang (2005) therefore gives, for any t ∈ R,

|g(t; v, ψ)− ϕ(t)| ≤ 0.14

(
4 +

0.29

(1− 8∆)2

)
(d∗)−1/2,

where ∆ = maxi∈{1,...,n} λ
2
i /
∑n

i=1 λ
2
i = a(ṽ, ψ)2 and

d∗ =
{
∑n

i=1 λ
2
i }3

{
∑n

i=1 |λi|3}2
≥ {

∑n
i=1 λ

2
i }3

maxi∈{1,...,n} λ2i {
∑n

i=1 λ
2
i }2

=

∑n
i=1 λ

2
i

maxi∈{1,...,n} λ2i
= a(ṽ, ψ)−2,

which completes the proof.

Proof of Lemma 5. For any ψ ∈ P, by absolute homogeneity of norms, a(ṽ, ψ) = a(ṽ/∥ṽ∥, ψ) ≤
ā since (ṽ/∥ṽ∥) ∈ Sr−1. The conclusion now follows from the right-hand side of Equation (15)

in the main text being increasing in a on (0, 8−1/2).

Proof of Theorem 2. The claim about convergence when βn = 0 is almost immediate from

Lemma 5 in the main text. Indeed, the lemma says the density of vT
nW

S
n (ψn) tends to the

standard normal density as n→ ∞ since ān → 0. Thus, Scheffé’s theorem (Billingsley, 1995,

Theorem 16.12) says vT
nW

S
n (ψn) tends to a standard normal in total variation, and hence in

distribution.

It remains to show the claim when βn is unknown. Partition un = [wn, vn]
T with wn ∈ Rpn

and let Rn = Σ
−1/2
n (Y − Xβn). Then, since In(θn) is block diagonal with leading block
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In(βn;ψn) ∈ Rpn×pn and trailing block In(ψn) ∈ Rrn×rn ,

uT

nW
S
n (θn) = wT

nIn(βn;ψn)−1/2Sn(βn;ψn) + vT

nW
S
n (ψn)

= wT

nIn(βn;ψn)−1/2XTΣ−1/2
n Rn +

1

2
RT

nAn(ṽn, ψn)Rn −
1

2
tr{An(ṽn, ψn)}

= w̃T

nRn +
1

2
RT

nAn(ṽn, ψn)Rn −
1

2
tr{An(ṽn, ψn)}

where w̃n = Σ
−1/2
n XIn(βn;ψn)−1/2wn = Σ−1/2X(XTΣ−1

n X)−1/2wn and Rn ∼ N(0, In) under

θn. By the subsequence principle (Billingsley, 1999, Theorem 2.6), it suffices to show every

subsequence has a further subsequence along which the quantity in the last display is

asymptotically standard normal. Thus, since ∥vn∥ ≤ 1, we may by the Bolzano–Weierstrass

property assume ∥vn∥ → v∗ ∈ [0, 1]. If v∗ = 0, then uT
nW

S
n (θn) = w̃T

nRn + op(1) → N(0, 1) in

distribution under θn by Slutsky’s theorem since ∥w̃n∥ = ∥wn∥ → 1.

If instead v∗ > 0, then for large enough n, ∥vn∥ > 0, and hence ṽn = In(ψn)−1/2v ≠ 0.

Here, we used that a(ψn, v) ≤ ān < 8−1/2 implies a(ψn, v) is defined for all v ∈ Sr−1, so

In(ψn) is positive definite by the discussion preceding the definition of a(v, ψ). Now let

Un ∈ Rrn×rn be an orthogonal matrix with eigenvectors of An(ṽn, ψn) as columns, and let

Γn = diag(γn1, . . . , γnn) be a matrix with the corresponding eigenvalues, n′ ≥ 1 of which

are non-zero since An(ṽ, ψ) is symmetric and not identically zero. Suppose without loss of

generality the eigenvalues are sorted so that |γn1| ≥ · · · ≥ |γnn|. By orthogonal invariance of

the multivariate standard normal distribution, UnRn has the same distribution as Rn. Thus,

with w̄n = UT
n w̃n the right-hand side in the last display equation has the same distribution as

w̃T

nURn +
1

2
RT

nU
TAn(ṽn, ψn)UnRn −

1

2
tr{UT

nAn(ṽn, ψn)U}

=
n∑
i=1

w̄niRni +
1

2

n∑
i=1

R2
niγni −

1

2

n∑
i=1

γni

=
n∑

i=n′+1

w̄niRni +
1

2

n′∑
i=1

γni(R
2
ni + 2w̄niRni/γni − 1)

=
n∑

i=n′+1

w̄niRni +
1

2

n′∑
i=1

γni{(Rni + w̄ni/γni)
2 − w̄2

ni/γ
2
ni − 1}.

Observe the first and second sum are independent because the elements of Rn are, the first sum

is normally distributed with mean zero, and the second sum is a weighted sum of independent

noncentral chi-squared random variables, with respective noncentrality parameters w̄ni/γni,
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i ∈ {1, . . . , n′}; centered to have mean zero. Let h2n =
∑n

i=n′+1 w̄
2
ni be the variance of the first

sum. Using that Rni and R
2
ni are uncorrelated, one gets that the variance of the second sum

is k2n = 2−1
∑n′

i=1(γ
2
ni + 2w̄2

ni).

By construction, h2n + k2n = 1, so we may again pass to a subsequence and assume

kn → k∗ ∈ [0, 1]. If k∗ = 0, convergence follows as in the case where v∗ = 0. Suppose

lastly that k∗ > 0. Then Theorem 2 of Zhang (2005) says the second sum is asymptotically

normal with mean zero and variance k∗ if γ2n1/
∑n′

j=1 γ
2
ni → 0. But that is equivalent to

a(ṽ, ψn)
2 = ∥An(ṽ, ψn)∥2/∥An(ṽ, ψn)∥2F → 0, which follows from the assumption ān → 0.

Thus, using independence of the first and second sum in the last display, they converge jointly

to a bivariate normal with mean zero and covariance matrix diag(1 − k2∗, k
2
∗). Thus, their

sum is asymptotically standard normal by the continuous mapping theorem, which completes

the proof.

Proof of Lemma 6. Submultiplicativity of the spectral norm gives

∥A(v, ψ)∥ ≤ ∥Σ(ψ)−1/2∥2∥Σ(v)∥ = ∥Σ(ψ)−1∥∥Σ(v)∥.

Moreover, using the minimax principle for eigenvalues of symmetric matrices (Bhatia, 2012,

Corollary III.1.2), with ej ∈ Rn denoting the jth standard basis vector,

∥A(v, ψ)∥2F = tr{Σ(ψ)−1/2Σ(v)Σ(ψ)−1Σ(v)Σ(ψ)−1/2}

=
n∑
j=1

eTjΣ(ψ)
−1/2Σ(v)Σ(ψ)−1Σ(v)Σ(ψ)−1/2ej

≥ γmin{Σ(ψ)−1}
n∑
j=1

eTjΣ(ψ)
−1/2Σ(v)Σ(v)Σ(ψ)−1/2ej.

Using cyclical invariance of the trace, that is, of the matrices in the sum in the last line, and

then the minimax principle again, gives that ∥A(v, ψ)∥2F is no smaller than

γmin{Σ(ψ)−1}2 tr{Σ(v)2} = γmin{Σ(ψ)−1}2∥Σ(v)∥2F = ∥Σ(ψ)∥−2∥Σ(v)∥2F .

Combining this lower bound with the upper bound on ∥A(v, ψ)∥ completes the proof.

Proof of Theorem 3. Let us first suppose p = 0 and consider the special case Zi = Z1 for

all i. That is, observations are independent and identically distributed, which substantially

simplifies the proof. To apply Lemma 6, note ∥Σ(ψ)∥ = max1≤i≤m ∥Σi(ψ)∥, where Σi(ψ) =
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ZiΨ1(ψ)Z
T
i + ψrIni

. Thus, by the triangle inequality and submultiplicativity of the spectral

norm, ∥Σ(ψ)∥ ≤ ∥Zi∥2∥Ψ1(ψ)∥+ ψr ≤ c2∥Ψ1(ψ)∥+ ψr. Moreover, ∥Ψ1(ψ)∥2 ≤ ∥Ψ1(ψ)∥2F ≤
2∥ψ−r∥2 since vech(Ψ1) = ψ−r. Thus, we have established ∥Σ(ψ)∥ ≤ 21/2c2∥ψ−r∥+ ψr, and

hence by using ∥Σ(ψ)−1∥ = 1/γmin{Σ(ψ)} ≤ 1/ψr,

∥Σ(ψ)−1∥∥Σ(ψ)∥ ≤ 21/2c2∥ψ−r/ψr∥+ 1 ≤ 21/2c2(1 + ∥ψ−r/ψr∥).

We next show that, when Zi = Z1 for all i, for any v ∈ Sr−1,

∥Σ(v)∥/∥Σ(v)∥F ≤ m−1/2.

By block-diagonality, ∥Σ(v)∥ = ∥Σ1(v)∥ ≤ ∥Σ1(v)∥F and ∥Σ(v)∥2F =
∑m

i=1 ∥Σi(v)∥2F =

m∥Σ1(v)∥2F , so ∥Σ(v)∥F ≥ m1/2∥Σ1(v)∥F . Thus, the bound is established if ∥Σ1(v)∥F ̸= 0 for

all v ∈ Sr−1. But by block-diagonality, that is equivalent to ∥Σ(v)∥F > 0, which holds by

Corollary 1 since Z = bdiag(Z1, . . . , Zm) has full column rank. Indeed, γmin(Z
T
i Zi) > 0 for

all i implies each Zi has full column rank.

Now suppose the Zi need not be the same, but still p = 0. The bound on ∥Σ(ψ)−1∥∥Σ(ψ)∥
still holds because we did not use the assumption that Zi = Z1, so it suffices to bound

∥Σ(v)∥/∥Σ(v)∥F . To that end, note

∥Σ(v)∥ = max

(
max
1≤i≤m

∥ZiΨ1(v)Z
T

i + vrIni
∥, |vr|

)
.

Moreover, using the triangle inequality, submultiplicativity of the spectral norm, |vr| ≤ 1, and

∥Ψ1(v)∥2 ≤ ∥Ψ1(v)∥2F ≤ 2∥v∥2 ≤ 2, we get ∥ZiΨ1(v)Z
T
i + vrIni

∥ ≤ 21/2∥Zi∥2 +1 ≤ 21/2c2 +1.

Thus, ∥Σ(v)∥ ≤ 1 + 21/2c2.

Next, ∥Σ(v)∥2F =
∑m

i=1 ∥ZiΨ1(v)Z
T
i + vrIni

∥2F . By cyclic invariance of the trace, the ith

term in the sum satisfies, with Ci = ZT
i Zi,

∥ZiΨ1(v)Z
T

i + vrIni
∥2F = tr{ZiΨ1(v)Z

T

i ZiΨ(v)ZT

i + 2vrZiΨ1(v)Z
T

i + v2rIni
}

= tr{C1/2
i Ψ1(v)C

1/2
i + 2vrC

1/2
i Ψ1(v)C

1/2
i + v2rIq1}+ v2r(ni − q1)

= ∥C1/2
i Ψ1(v)C

1/2
i + vrIq1∥2F + v2r(ni − q1).

To lower bound this, we use, in order, the triangle inequality, γmin(Ci) ≥ c−1
2 , ∥Ψ1(v)∥2F ≥
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∥v−r∥2 = 1− v2r , and Jensen’s inequality applied to the concave square-root to write

∥C1/2
i Ψ1(v)C

1/2
i + vrIq1∥F ≥ ∥C1/2

i Ψ1(v)C
1/2
i ∥F − |vr|q1/21

≥ c−1
2 ∥Ψ1(v)∥F − |vr|q1/21

≥ c−1
2 (1− v2r)

1/2 − |vr|q1/21

≥ c−1
2 2−1/2(1− |vr|)− |vr|q1/21

= 2−1/2{c−1
2 − |vr|(c−1

2 + (2q1)
1/2)}.

Thus, if |vr| ≤ 2−1c−1
2 (c−1

2 + (2q1)
1/2)−1 = 1/(2 + c2(8q1)

1/2), say; then ∥C1/2
i Ψ1(v)C

1/2
i +

vrIq1∥F ≥ 1/(c28
1/2) and, therefore, ∥Σ(v)∥F ≥ m1/2/(c28

1/2). If on the other hand |vr| >
1/(2 + c2(8q1)

1/2), then

∥Σ(v)∥F ≥ |vr|(n−mq1)
1/2 ≥ m1/2(n̄− q1)

1/2/(2+ c1(8q1)
1/2) ≥ m1/2(c1− 1)1/2/(2+ c28

1/2).

Consequently,

∥Σ(v)∥F ≥ m1/2min{1/(c281/2), (c1 − 1)1/2/(2 + c28
1/2)} = m1/2c̃3,

where c̃3 is defined by the last equality. In summary, Lemma 6 gives

a(v, ψ) ≤ (1 + 21/2c2)2
1/2c2c̃

−1
3 m−1/2(1 + ∥ψ−r/ψr∥),

which upon taking, for example, c3 = (1 + 21/2c2)
2c̃−1

3 completes the case p = 0.

Suppose finally that p > 0 and let Σ̃(v) = V TΣ(v)V . Observe ∥Σ̃(v)∥ = ∥V TΣ(v)V ∥ ≤
∥V ∥2∥Σ(v)∥ = ∥Σ(v)∥ by submultiplicativity of the spectral norm. Moreover, by H.1.h. of

Marshall et al. (2011, p.341) and the claim following it,

∥Σ̃(v)∥2F =
n∑
j=1

λj{V V TΣ(v)V V TΣ(v)} ≥
n∑
j=1

λj{Σ(v)V V TΣ(v)}λn−j+1(V V
T),

which, since V V T has 1 and 0 as eigenvalues with respective multiplicities n− p and p, equals∑n
j=p+1 λj{Σ(v)V V TΣ(v)} = tr{Σ(v)V V TΣ(v)} −

∑p
j=1 λj{Σ(v)V V TΣ(v)}. For the first of

these terms, cyclical invariance of the trace and H.1.h. of Marshall et al. (2011) gives

tr{Σ(v)V V TΣ(v)} = tr{Σ(v)2V V T} ≥
n∑

j=p+1

λj{Σ(v)2} = ∥Σ(v)∥2F −
p∑
j=1

λj{Σ(v)2}.
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Thus, since |
∑p

j=1 λj{Σ(v)V V TΣ(v)}| ≤ p∥Σ(v)V V TΣ(v)∥ ≤ p∥Σ(v)∥2 by submultiplicativ-

ity of the spectral norm, we find

∥Σ̃(v)∥2F ≥ ∥Σ(v)∥2F − 2p∥Σ(v)∥2

≥ m
[
min{c−2

2 8−1, (c1 − 1)−1(2 + c28
1/2)−1} − 2c4(1 + c22

1/2)2
]

= mc̃4,

where c̃4, defined by the last equality, is strictly positive for small enough c4. Thus, by

Lemma 6, ã(v, ψ) ≤ (1 + 21/2c2)2
1/2c2c̃

−1/2
4 m−1/2(1 + ∥ψ−r/ψr∥), so we are done upon taking,

for example, c3 = (1 + 21/2c2)
2c̃

−1/2
4 .

Proof of Corollary 3. By Lemmas 3 and 4, it suffices to consider an arbitrary sequence (ψn)

converging to some ψ0 ∈ P and show that, under that sequence, T̃ Sn (ψn) has as asymptotic chi-

squared distribution with r degrees of freedom. For this, it suffices that W̃ S
n (ψn) → N(0, Ir) in

distribution. This, in turn, follows from the Cramér–Wold theorem and the second conclusion

of Corollary 2 if we verify its condition (v). To that end, note ψ0 ∈ P implies ψ0r > 0,

and hence ψnr > 0 for all large enough n. Thus, since ∥ψ−nr∥ is bounded due to ψn being

convergent, ∥ψ−nr∥/ψnr = O(1) = o(m1/2), so the proof is completed.

Proof of Theorem 4. Let Qj = Inj
− Pj and define PQ

j the same way as Pj but with Qj in

place of Inj
, j ∈ {1, . . . , r− 1}. Let also Pr = P1 ⊗ · · · ⊗Pr−1 = 1n1

T
n/n. Then Pj = Pr +PQ

j

for j ∈ {1, . . . , r − 1} and, consequently,

Σ =
r−1∑
j=1

ψjn(j)(Pr + PQ
j ) + ψrIn

=
r−1∑
j=1

(ψr + ψjn(j))PQ
j + Pr

(
ψr +

r−1∑
j=1

ψjn(j)

)
+ ψr(In − P), (1)

where P = Pr+
∑r−1

j=1 P
Q
j . Here, the last step uses that PrPQ

j = 0 for every j ∈ {1, . . . , r−1},
and PQ

i P
Q
j = 0 for i ≠ j, both of which follow from the mixed-product property (Magnus

and Neudecker, 2002, Equation (4), p.32) and QjPj = 0 for j ∈ {1, . . . , r − 1}. Thus, P is

a projection matrix satisfying (In − P)PQ
j = 0 for j ∈ {1, . . . , r − 1} and (In − P)Pr = 0.

Consequently, (1) gives a spectral decomposition of Σ where each of the r + 1 addends is a

projection onto an eigenspace, scaled by the corresponding eigenvalue.
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Recalling the definition Aj = Σ−1/2(∂Σ/∂ψj)Σ
−1/2, we get

A(v, ψ) = Σ(ψ)−1/2Σ(v)Σ(ψ)−1/2

=
r−1∑
j=1

vr + vjn(j)

ψr + ψjn(j)

PQ
j + Pr

(
vr +

∑r−1
j=1 vjn(j)

ψr +
∑r−1

j=1 ψjn(j)

)
+
vr
ψr

(In − P).

Write s21, . . . , s
2
r+1 for the squared eigenvalues of A(v, ψ), ordered as in the last display. That

is, s2j = (vr + vjn(j))
2/(ψr + ψjn(j))

2, j ∈ {1, . . . , r − 1}; s2r = (vr +
∑r−1

j=1 vjn(j))
2/(ψr +∑r−1

j=1 ψjn(j))
2; and s2r+1 = v2r/ψ

2
r . Thus, ∥A(v, ψ)∥2 = max{s21, . . . , s2r+1}. If this maximum

is s2j for some j ∈ {1, . . . , r − 1}, then since ∥A(v, ψ)∥2F ≥ s2j∥P
Q
j ∥2F = s2j(nj − 1), we get

a(v, ψ)2 ≤ 1/(nj − 1), where we used that, for a projection matrix, its squared Frobenius

norm is its rank. Similarly, if ∥A(v, ψ)∥2 = s2r+1, then a(v, ψ)
2 ≤ 1/∥In − Pr∥2F = 1/ñ. It

remains only to consider the case where ∥A(v, ψ)∥2 = s2r. This case is more complicated

because ∥Pr∥F = 1.

Since the squared Frobenius norm of a symmetric matrix is the sum of squared eigenvalues,

∥A(v, ψ)∥2F is

r−1∑
j=1

(vr + vjn(j))
2

(ψr + ψjn(j))2
(nj − 1) +

(
vr +

∑r−1
j=1 vjn(j)

ψr +
∑r−1

j=1 ψjn(j)

)2

+
v2r
ψ2
r

ñ.

Since the ψj are all non-negative, the denominator for each ratio in the last display is

upper bounded by (ψr +
∑r−1

j=1 ψjn(j))
2, which is also the denominator of s2r. Thus, when

∥A(v, ψ)∥2 = s2r, a(v, ψ)
2 is upper bounded by

(vr +
∑r−1

j=1 vjn(j))
2∑r−1

j=1(vr + vjn(j))2(nj − 1) + (vr +
∑r−1

j=1 vjn(j))2 + v2r ñ
.

Let bj = vr+vjn(j), j ∈ {1, . . . , r−1}, and br = vr. Then the last display is a ratio of quadratic

forms in b = [b1, . . . , br]
T. Specifically, since vr+

∑r−1
j=1 vjn(j) =

∑r−1
j=1(vr+n(j)vj)−(r−2)vr =∑r−1

j=1 bj − (r − 2)br, it is

(bTu)2

bTDb+ (bTu)2
=

bTuuTb

bT(D + uuT)b
.

where u = [1, . . . , 1,−(r − 2)]T and D = diag(n1 − 1, . . . , nr−1 − 1, ñ). Since D is positive

10



definite, we can let b̃ = (D + uuT)1/2b and get by Cauchy–Schwartz’s inequality that

b̃T(D + uuT)−1/2uuT(D + uuT)−1/2b̃

∥b̃∥2
≤ uT(D + uuT)−1u.

Using the Sherman–Morrison formula, uT(D+uuT)−1u = uTD−1u−(uTD−1u)2(1+uTD−1u)−1 =

uTD−1u{1 − (uTD−1u)(1 + uTD−1u)−1} ≤ uTD−1u =
∑r−1

j=1(nj − 1)−1 + (r − 2)2/ñ, which

completes the proof of the first claim. We note the last inequality is asymptotically strict in

the sense that when uTD−1u tends to zero, the left-hand side is uTD−1u(1 + o(1)).

For the second claim, let Σ̃(v) = V TΣ(v)V and Ã(v, ψ) = Σ̃(ψ)−1/2Σ̃(v)Σ̃(ψ)−1/2. Observe

that Pr = 1n1
T
n/n = In − V V T. Therefore, by (1),

Σ̃ =
r−1∑
j=1

(ψr + ψjn(j))V
TPQ

j V + ψrV
T(In − P)V

=
r−1∑
j=1

(ψr + ψjn(j))V
TPQ

j V + ψrIn−1 −
r−1∑
j=1

ψrV
TPQ

j V

=
r−1∑
j=1

ψjn(j)V
TPQ

j V + ψrIn−1.

Now V TPQ
i V V

TPQ
j V = V TPQ

i (In − Pr)PQ
j V = V TPQ

i P
Q
j V , which is zero if i ≠ j and

V TPQ
i V otherwise. That is, the leading r − 1 terms in the sum in last display are projection

matrices onto orthogonal spaces. Therefore,

Σ̃ =
r−1∑
j=1

(ψr + ψjn(j))V
TPQ

j V + ψr(In−1 − P̃),

where P̃ =
∑r−1

j=1 V
TPQ

j V = V TPV is also a projection matrix. Now by arguments similar to

those for the case with V = In,

ã(v, ψ)2 ≤ max
(
∥In−1 − P̃∥−2

F , ∥V TPQ
1 V ∥−2

F , . . . , ∥V TPQ
r−1V ∥−2

F

)
≤ max

(
(ñ− 1)−1, (nj − 2)−1, . . . , (nr−1 − 2)−1

)
,

which completes the proof.

Proof of Corollary 4. Recall n = n(k) depends on k but let us suppress that for simplicity.
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Figure A: Quantiles of test-statistics evaluated at a true ψ ∈ R4 that is near the boundary.
For i ∈ {1, . . . , 50}, Yi = ZiUi + Ei, where Ui ∼ N(0,Ψ1), Ψ1 ∈ R2×2 has diagonal elements
ψ1 = ψ3 = 10−3 and off-diagonal ψ2 = 0, and Ei ∼ N(0, ψ4), ψ4 = 10. Elements of Zi ∈ R5×2

were drawn prior to simulations from a Bernoulli distribution with mean 1/2. Empirical
quantiles based on 10 000 replications.

Suppose for contradiction that

lim sup
k→∞

sup
ψ∈P

∣∣∣Pψ{ψ ∈ C̃S
n(α)} − (1− α)

∣∣∣ > 0.

Then for some ϵ > 0, supψ∈P

∣∣∣Pψ{ψ ∈ C̃S
n(α)} − (1− α)

∣∣∣ ≥ ϵ for infinitely many k. For

each such k, we can pick a ψk ∈ P such that
∣∣∣Pψk

{ψk ∈ C̃S
n(α)} − (1− α)

∣∣∣ ≥ ϵ/2, say.

But Theorem 4 says that as k → ∞ and nkmin → ∞, for any v ∈ Sr−1, the density of

vTW̃ S
n (ψk) tends to the standard normal density. Therefore, as argued in the proof of

Theorem 2, W̃ S
n (ψk) → N(0, Ir) in distribution and T̃ Sn (ψk) → χ2

r in distribution. Thus,

Pψk
{ψk ∈ C̃S

n(α)} = Pψk
{T̃ Sn (ψk) ≤ cr,1−α} → 1− α, which is the desired contradiction.

B Additional numerical results

Figure A is like Figure 1 in the main text but with error variance ψ4 = 10 instead of

ψ4 = 1. Notably, though we have verified there are some small differences, the plots are

almost identical. These results suggest that, at least in this setting, the conclusions are not

particularly sensitive to the error variance.
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Figure B: Coverage probabilities with independent clusters and independent random effects,
for different random effect variances (horizontal axes). The settings are (m,ni, p) equal to
(500, 3, 2) (left plot), (20, 3, 3) (middle plot), and (200, 3, 100) (right plot).

Figure B shows results from a simulation with the same settings as those for Figure 2 in

the main text, except that, here, the random effects’ covariance matrix is Ψ1 = diag(ψ1, ψ3),

with ψ1 = ψ3 indicated on the horizontal axes. That is, the true covariance ψ2 = 0 and

the random effects are therefore independent. When m = 500 (left plot), the likelihood

ratio and Wald regions are conservative near the boundary while both score-based methods

have approximately nominal coverage probabilities. Further from the boundary, the Wald

confidence regions are invalid while the other three have approximately nominal coverage

probability. When m = 20 (middle plot), the Wald region is clearly invalid for all considered

settings; the likelihood ratio region is conservative. The profile and restricted score regions

have coverage probabilities above and below nominal, respectively. However, both are close to

nominal for all considered parameter values. With many predictors (right plot), the likelihood

ratio and Wald regions are conservative near the boundary. The restricted score-based region

has approximately correct coverage. The profile score-based region is omitted because its

coverage is so far below nominal that it would obscure the comparisons of the other methods.

Figure C shows results from a simulation with the same settings as that for Figure B,

except that in the middle and right plot ψ3 ̸= ψ1. The left plot, which is the same as

the left plot in Figure B, is included for comparison. The middle plot shows that when

ψ3 is on the boundary, moving ψ1 away from the boundary has only a small effect on the

coverage probabilities of likelihood ratio and Wald regions, as expected. Conversely, the right

plot shows that the coverage probabilities of likelihood ratio and Wald regions are closer to
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Figure C: Coverage probabilities with independent clusters and independent random effects
with (m,ni, p) = (500, 3, 2). The random effect variance not on the horizontal axis is ψ3 = ψ1

(left plot), ψ3 = 0 (middle plot), or ψ3 = 0.3 (right plot).

nominal when only one of ψ1 and ψ3 are on the boundary. As before, the score-based regions

have approximately nominal coverage probabilities in all settings.

Figure D shows results from a simulation with the same settings as that for Figure 3 in

the main text, except that in the right plot n1 = 20 and n2 = 80. That is, the total number

of observations is still n = 1600, but the observations are unbalanced. The left plot, which

is included for comparison, is the same as the left plot in Figure 3 of the main text. The

theory suggests mini ni is an important quantity for the asymptotic approximations, and this

is reflected in the coverage probabilities here. For example, in the right plot, the coverage

issues for the likelihood ratio region are present for a wider range of ψ1 = ψ2 than in the

left plot, where n1 = n2 = 40. Similarly, the coverage issues for the Wald region are more

pronounced in the right plot. The score-based regions have approximately nominal coverage

probabilities for all parameter values in both settings.

C Practical considerations

We make a few observations that can help implement the proposed methods. Recall β̃ =

β̃(ψ) = {XTΣ(ψ)−1X}−1XTΣ(ψ)−1Y is a partial maximizer of ℓ(β, ψ) in β and define the

profile likelihood ℓP (ψ) = ℓ(β̃, ψ). Then, the restricted log-likelihood can also be written
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Figure D: Coverage probabilities with crossed, independent random effects, for different
random effect variances ψ1 = ψ2 (horizontal axes). The settings are (n1, n2, p) equal to
(40, 40, 2) (left plot) and (20, 80, 2) (right plot).

(Harville, 1974), up to a constant,

ℓR(ψ) = ℓP (ψ)− 1

2
log |XTΣ(ψ)−1X|

= −1

2

{
log |Σ(ψ)|+ log |XTΣ(ψ)−1X|+ (Y −Xβ̃)TΣ(ψ)−1(Y −Xβ̃)

}
.

By well-known envelope theorems (see for example Milgrom and Segal, 2002), the profile

score satisfies SP (ψ) = ∂ℓP (ψ)/∂ψ = S{β̃(ψ), ψ}, the usual score evaluated at the par-

tial maximizer in β. Thus, the restricted score is, for j < r, SR(ψj) = S{β̃(ψ), ψ} −
(1/2) tr[{XTΣ(ψ)−1X}−1XTΣ−1(ψ)ZHjZ

TΣ−1(ψ)X], and similarly for j = r.

The profile score is straightforward to compute using the expressions for the usual score

in the main text. Expressions involving Σ(ψ)−1 can usually be computed efficiently by using

the Woodbury identity to get Σ−1 = ψ−1
r In − ψ−2

r Z(Iq + ψ−1
r ΨZTZ)−1ΨZT. Using this, the

additional term in the restricted score can also be computed efficiently. Similar arguments

apply to the expression for the Fisher information given in the main text. For example, to

compute tr(AiAj) for i, j < r, note

tr(AiAj) = tr(Σ−1/2ZHiZ
TΣ−1ZHjZ

TΣ−1/2) = tr(ZTΣ−1ZHiZ
TΣ−1ZHj)

and ZTΣ−1Z, which is shared for all i, j < r, can be computed efficiently using the Woodbury

identity above.
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