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A Proofs

Proof of Proposition 1. We first derive a convenient expression for the stochastic part of the
restricted score function. Recall P = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2 and write Y − Xβ̃ =
Y −X(XTΣ−1X)−1XTΣ−1Y = (In−X(XTΣ−1X)−1XTΣ−1)Y = (In−Σ1/2PΣ−1/2)Y . Thus,

(Y −Xβ̃)TΣ−1VjΣ
−1(Y −Xβ̃) = Y T(In − Σ−1/2PΣ1/2)Σ−1VjΣ

−1(In − Σ1/2PΣ−1/2)Y

= Y TΣ−1/2(In − P )Σ−1/2VjΣ
−1/2(In − P )Σ−1/2Y

= Y TΣ−1/2QΣ−1/2VjΣ
−1/2QΣ−1/2Y.

Since QΣ−1/2X = Σ−1/2X − Σ−1/2X(XTΣ−1X)−1XTΣ−1X = Σ−1/2X − Σ−1/2X = 0, the
preceeding display has the same distribution as

ξT

nQΣ−1/2VjΣ
−1/2Qξn,

where ξn ∼ N(0, In) and the distribution holds jointly for j ∈ {1, 2}. For j = 1 we get

QΣ−1/2V1Σ
−1/2Q = QΣ−1/2Oσ2

n(Λ− In)O
TΣ−1/2Q

= QO{h2Λ + (1− h2)In}−1/2(Λ− In){h2Λ + (1− h2)In}−1/2OQ

= QHQ,

and, similarly, QΣ−1/2V2Σ
−1/2Q = QΣ−1/2(Σ/σ2)Σ−1/2Q = Q/σ2. It follows that

I11(h
2, σ2) =

1

2
tr(QHQHQ) =

1

2
tr(QHQH)

I12(h
2, σ2) =

1

2
tr(QHQQ/σ2) =

1

2σ2
tr(QH)

I22(h
2, σ2) =

1

2σ4
tr(Q) =

n− p

2σ4
.
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Proof of Theorem 1. We start with some useful observations. First, I11(h
2, σ2) = tr(QHQQHQ)/2

and I12(h
2, σ2) = tr(QHQ)/(2σ2) since Q is idempotent. Secondly, the eigenvalues of QHQ

are real since QHQ is symmetric, and hence the eigenvalues of QHQQHQ are positive as
the squares of real numbers.

Now, suppose QHQ has n − p eigenvalues equal to some c ∈ R, with the remaining p
eigenvalues equal to zero. Then the determinant

|I(h2, σ2)| = 1

4σ4
{(n− p) tr(QHQQHQ)− tr(QHQ)2}

is zero since tr(QHQQHQ) = (n− p)c2 and tr(QHQ) = (n− p)c. Thus, I(h2, σ2) is singular.
To establish the other direction, suppose instead that not all of the n−p possibly non-zero

eigenvalues of QHQ are identical. Then Jensen’s inequality gives

1

n− p

n∑
i=1

γi(QHQ)2 >

{
1

n− p

n∑
i=1

γi(QHQ)

}2

,

where γi(·) is the ith largest eigenvalue. Thus, |I(h2, σ2)| > 0. Moreover, at least one
eigenvalue of QHQQHQ is strictly positive, so I11(h

2, σ2) > 0. Thus, I(h2, σ2) is positive
definite by Sylvester’s criterion.

Lemma A. If (1) holds for some X with full column rank, then

(n− p)σ̃2(h2)/σ2
n ∼ χ2

n−p.

Proof. Assuming O = In, by (9) and proof of Proposition 1,

(n− p)σ̃2(h2)/σ2
n = (Y −Xβ̃)TΣ−1(Y −Xβ̃)

= Y T(In − Σ−1/2PΣ1/2)Σ−1(In − Σ1/2PΣ−1/2)Y

= Y TΣ−1/2(In − P )Σ1/2Σ−1Σ1/2(In − P )Σ−1/2Y

= Y TΣ−1/2(In − P )(In − P )Σ−1/2Y

= Y TΣ−1/2QΣ−1/2Y.

Since QΣ−1/2X = 0 given by proof of Proposition 1, QΣ−1/2Y ∼ N (0, Q), then the above
quadratic form has the same distribution as ξT

nQξn, where ξn ∼ N (0, In).
By spectral decomposition, Q = CΩCT for some orthogonal C ∈ Rn×n and Ω =

diag(1, . . . , 1, 0, . . . , 0) with rank n− p. Since CTξn ∼ N (0, In), we can write

ξT

nQξn = ξT

nCΩCTξn = (CTξn)
TΩ(CTξn) =

n−p∑
i=1

(CTξn)
2
i ∼ χ2

n−p,

where (CTξn)i is the ith element of CTξn.
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Proof of Lemma 1. We write In = In(h
2
n, σ

2
n) and Un = U(h2

n, σ
2
n) for simplicity. By continu-

ous mapping theorem, it suffices to show

J −1/2
n D−1

n Un ⇝ N(0, I2), (1)

where In = DnJnDn, Jn is the correlation matrix corresponding to In, and Dn is diagonal
with positive entries. By definition, Jn is the covariance matrix of D−1

n Un. Also, from
Proposition 1, Dn11 = ∥QHQ∥F/

√
2 and Dn22 =

√
(n− p)/(

√
2σ2

n).
To prove (1), it suffices to show that (i) the eigenvalues of Jn are bounded away from

zero and infinity asymptotically, and (ii) for any unit-length w ∈ R2,

wTD−1
n Un

var(wTD−1
n Un)1/2

=
wTD−1

n Un

(wTJnw)1/2
⇝ N(0, 1). (2)

We start with (ii). By arguments in the proof of Proposition 1,

√
2wTD−1

n Un ∼ w1ξ
T

n(QnHnQn/∥QnHnQn∥F )ξn − w1 tr(QnHnQn/∥QnHnQn∥F )
+ w2ξ

T

nQnξn/
√
n− p− w2 tr(Qn/

√
n− p)

= ξT

n

(
w1

QnHnQn

∥QnHnQn∥F
+ w2

Qn√
n− p

)
ξn − w1 tr

(
QnHnQn

∥QnHnQn∥F

)
− w2

√
n− p

= ξT

nKnξn − tr(Kn),

where Kn is defined by the last equality. Using spectral decomposition of Kn and rotational
invariance of the normal distribution,

ξT

nKnξn − tr(Kn) ∼
n−p∑
i=1

γi(Kn)(ξ
2
ni − 1).

We establish (2) by verifying Lyapunov’s condition (Billingsley, 1995, Theorem 27.3) holds
for the right-hand side in the last display. Let

an =
n∑

i=1

E[{γi(Kn)(ξ
2
ni − 1)}2] = E{(ξ211 − 1)2}

n∑
i=1

γi(Kn)
2 = E{(ξ211 − 1)2}∥Kn∥2F

and

bn =
n∑

i=1

E[{γi(Kn)(ξ
2
ni − 1)}4] = E{(ξ211 − 1)4}

n∑
i=1

γi(Kn)
4 ≤ E{(ξ211 − 1)4}∥Kn∥2∥Kn∥2F .

Lyapunov’s condition says (2) holds if bn/a
2
n → 0, which holds if and only if ∥Kn∥/∥Kn∥F → 0.

We next show ∥Kn∥ → 0 and lim infn→∞ ∥Kn∥F > 0.
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For the former we have, by the triangle inequality and submultiplicativity of the spectral
norm,

∥Kn∥ ≤ |w1|
∥QnHnQn∥
∥QnHnQn∥F

+ |w2|
∥Qn∥√
n− p

= |w1|
∥Hn∥

∥QnHnQn∥F
+ |w2|

1√
n− p

= |w1|
γ1(D

2
n)

1/2

∥QnHnQn∥F
+ |w2|

1√
n− p

,

which tends to zero by assumption 2 since, by H.1.h of Marshall et al. (2011),

∥QnHnQn∥2F = tr(QnHnQnHn)

= tr(HnQnHn − PnHnQnHn)

= tr(H2
n −HnPnHn − PnH

2
n + PnHnPnHn)

≥ tr(H2
n)− 2 tr(PnH

2
n)

≥ tr(D2
n)− 2

p∑
i=1

γi(D
2
n).

To show lim infn→∞ ∥Kn∥F > 0 we consider two cases. First, if |w1| ̸= |w2|, then by
reverse triangle inequality,∥∥∥∥w1

QnHnQn

∥QnHnQn∥F
+ w2

Qn√
n− p

+

∥∥∥∥
F

≥
∣∣∣∣∥∥∥∥w1

QnHnQn

∥QnHnQn∥F

∥∥∥∥
F

−
∥∥∥∥w2

Qn√
n− p

∥∥∥∥
F

∣∣∣∣
= ||w1| − |w2||,

(3)

which is greater than zero and does not depend on n. If instead |w1| = |w2|,∥∥∥∥w1
QnHnQn

∥QnHnQn∥F
+ w2

Qn√
n− p

∥∥∥∥2
F

= w2
1

∥∥∥∥ Qn√
n− p

± QnHnQn

∥QnHnQn∥F

∥∥∥∥2
F

= w2
1 tr

(
Q2

n

n− p
+

(QnHnQn)
2

∥QnHnQn∥2F
± 2

Qn√
n− p

QnHnQn

∥QnHnQn∥F

)
= 2w2

1

{
1± tr

(
Qn√
n− p

QnHnQn

∥QnHnQn∥F

)}
,

(4)

so, since Qn is idempotent, it suffices to show

lim sup
n→∞

| tr(QnHn)|√
n− p∥QnHnQn∥F

< 1.

We bound the numerator first. By the triangle inequality,

| tr(QnHn)| = | tr(Hn)− tr(PnHn)| ≤ | tr(Hn)|+ | tr(PnHn)|.

Applying H.1.g and H.1.h of Marshall et al. (2011) (note their comment regarding positive
semi-definiteness) to tr(PnHn), we have

p∑
i=1

γn−p+i(Dn) ≤ tr(PnHn) ≤
p∑

i=1

γi(Dn), (5)
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which gives an upper bound of |tr(PnHn)|. Using this bound followed by Jensen’s inequality
gives

|tr(PnHn)| ≤ max

{∣∣∣∣∣
p∑

i=1

γi(Dn)

∣∣∣∣∣ ,
∣∣∣∣∣

p∑
i=1

γn−p+i(Dn)

∣∣∣∣∣
}

≤
p∑

i=1

√
γi(D2

n)

≤

(
p

p∑
i=1

γi(D
2
n)

)1/2

.

We thus have that the ratio to be bounded is no greater than

| tr(Dn)|+ {p
∑p

i=1 γi(D
2
n))}1/2√

n− p{tr(D2
n)− 2

∑p
i=1 γi(D

2
n)}1/2

=
| tr(Dn)|√

n− p{tr(D2
n)− 2

∑p
i=1 γi(D

2
n)}1/2

+ o(1).

By assumption 2, and since n/(n− p) → 1 by assumption 1, the last right-hand side is

{1 + o(1)}n
−1/2| tr(Dn)|
tr(D2

n)
1/2

+ o(1),

the upper limit of which is less than one by assumption 3, which establishes (2).
It remains only to establish (i). First, since Jn is a correlation matrix, it’s entries are

no greater than one in absolute value, and hence γ1(Jn) = ∥Jn∥ ≤ ∥Jn∥F ≤ 2. To bound
γ2(Jn) away from zero, suppose for contradiction lim infn→∞ γ2(Jn) = 0. Then we can pick
a subsequence along which γ2(Jn) → 0. Since ∥Jn∥F is bounded, we may also, by the
Bolzano–Weierstrass property, pick the subsequence in such a way that Jn converges to some
positive semi-definite J . Since γ2(Jn) → 0, J has at least one vanishing eigenvalue. Let
w be a corresponding eigenvector. Then, along the subsequence, wTJnw → 0. But, by the
arguments following (2), wTJnw = ∥Kn∥2F , and we already proved lim infn→∞ ∥Kn∥F > 0,
which gives the desired contradiction. Thus, (i) holds and the proof is complete.

Proof of Lemma 2. Define a remainder Rn1 to be dealt with later by

Un1(h
2
n, σ̃

2
n) = Un1(h

2
n, σ

2
n) +∇2

12lR(h
2
n, σ

2
n)(σ̃

2
n − σ2

n) +Rn1.

Since

Un2(h
2
n, σ

2
n) = −n− p

2σ2
n

+
(n− p)σ̃2

n

2σ4
np

,

we have σ̃2
n − σ2

n = 2σ4
npUn2(h

2
n, σ

2
n)/(n − p) = Un2/In22(h

2
n, σ

2
n). For the remainder of the

proof, we omit the arguments when they are the true parameters (h2
n, σ

2
n). Then

Un1(h
2
n, σ̃

2
n) = Un1 + (∇2

12lR)Un2/In22 +Rn1 = Un1 − In12I−1
n22Un2 +Rn1 +Rn2,
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where Rn2 = (∇2
12lR + In12)Un2/In22. We complete the proof by showing (i) R2

n1I
(11)
n → 0 in

probability, (ii) R2
n2I

(11)
n → 0 in probability, and (iii)

{Un1 − In12Un2/In22}(I(11)
n )1/2 ⇝ N(0, 1).

It will be useful to note

I(11)
n = (In11 − I2

n21/In22)
−1 =

In22

In11In22 − I2
n21

,

which in fact does not depend on σ2
n. We begin with (ii) and have

∇2
12lR = ∇1Un2 = − 1

2σ4
np

n∑
i=1

(λi − 1)(Yi −XT
i β̃)

2

(h2
nλi + 1− h2

n)
2

= − 1

2σ2
n

(Y −Xβ̃)TΣ−1/2
n DnΣ

−1/2
n (Y −Xβ̃)

From the proof of Proposition 1, Y −Xβ̃ = (In − Σ
1/2
n PΣ−1/2)Y = Σ

1/2
n (In − Pn)Σ

−1/2
n Y =

Σ
1/2
n QnΣ

−1/2
n Y , and so

∇2
12lR = − 1

2σ2
n

Y TΣ−1/2
n QnDnQnΣ

−1/2
n Y.

Thus, −Rn2(I(11)
n )1/2 is

1

2n−1/2σ2
n(In11In22 − I2

n12)
1/2

1

n1/2

(
Y TΣ−1/2

n QnDnQnΣ
−1/2
n Y − tr(QnDn)

)
Un2/

√
In22,

which we can write as I−1/2 × II× III by defining

I = 4n−1σ4
np(In11In22 − I2

n12) = tr(QnDnQnDn)

{
1− p/n− n−1 tr(QnDn)

2

tr(QnDnQnDn)

}
;

II =
1

n1/2

(
Y TΣ−1/2

n QnDnQnΣ
−1/2
n Y − tr(QnDn)

)
;

III =
Un2√
In22

.

By calculations in the proof of Lemma 1, the term of I in curly brackets is bounded away
from zero asymptotically (c.f. condition 3 of that lemma), so I ≥ c tr(QnDnQnDn) for
some c > 0 and all large enough n. Next, II has mean zero and variance tr(QnDnQnDn)/n.
Thus, I−1/2 × II has mean zero and variance no greater than 1/(cn), and hence it tends to
zero in mean square and probability. By Chebyshev’s inequality, III is OP(1), and hence
I−1/2 × II× III → 0 in probability, which completes the proof of (ii).

To show (i), use that, by Taylor’s theorem with Lagrange-form remainder, for some σ̄2
np

between σ2
n and σ̃2

np,

Rn1 = ∇3
122lR(h

2
n, σ̄

2
np)(σ̃

2
np − σ2

n)
2/2.
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Using calculations similar to when deriving ∇2
12lR, we get

∇3
122lR(h

2
n, σ̄

6
np) =

1

2σ̄6
np

n∑
i=1

(λi − 1)(Yi −XT
i β̃)

2

(h2
nλi + 1− h2

n)
2

=
σ2
n

2σ̄6
np

Y TΣ−1/2
n QnDnQnΣ

−1/2
n Y.

Thus, 2Rn1(I(11)
n )1/2 is

σ6
n

σ̄6
np

1

2σ4
np

I1/2
n22

(In11In22 − I2
n12)

1/2
Y TΣ−1/2

n QnDnQnΣ
−1/2
n Y (Un2/In22)

2

=
σ6
n

σ̄6
np

n−1/2

2σ2
nn

−1/2(In11In22 − I2
n12)

1/2
Y TΣ−1/2

n QnDnQnΣ
−1/2
n Y

U2
n2

In22

I1/2
n22

In22σ2
n

=
σ6
n

σ̄6
np

n−1/2

I1/2
Y TΣ−1/2

n QnDnQnΣ
−1/2
n Y × III2 ×

√
2√

n− p

=
σ6
n

σ̄6
np

× I−1/2 × (II + tr(QnDn)/
√
n)× III2 ×

√
2√

n− p
.

Note |σ̄2
np/σ

2
n − 1| ≤ |σ̃2

n/σ
2
n − 1| and σ̃2

n/σ
2
n ∼ χ2

n−p/(n− p), which tends to 1 in probability.
Thus, σ̄2

np/σ
2
n tends to one in probability and, by the arguments used to establish (ii), it

suffices to show | tr(QnDn)/n| × I−1/2 → 0. But Jensen’s inequality applied to the sum of
the n real eigenvalues of QDQ, which are the same as those of QD, gives | tr(QnDn)/n| ≤
tr(QnDnQnDn)

1/2n−1/2 and in the proof of (ii) we argued I ≥ c tr(QnDnQnDn), so

| tr(QnDn)/n| × I−1/2 ≤ (cn)−1/2 → 0.

Finally, to show (iii), let an = (I(11)
n )1/2[1,−In12/In22]

T, so that what we want to show
is aT

nUn ⇝ N(0, 1). A direct calculation shows the variance of aT
nUn is aT

nInan = 1. Let

bn = I1/2
n an. Then ∥bn∥ = 1 and aT

nUn = bTnI
−1/2
n Un. The proof of Lemma 1 shows

I−1/2
n Un ⇝ N(0, I2). Moroever, by the Bolzano–Weierstrass Theorem and the subsequence

principle, we may assume bn → b for some b with ∥b∥ = 1. The Cramér–Wold Theorem

says bTI−1/2
n Un ⇝ N(0, 1), and therefore bTnI

−1/2
n Un = bTI−1/2

n Un + (bn − b)TI−1/2
n Un =

bTI−1/2
n Un + oP(1)⇝ N(0, 1) by Slutsky’s Theorem, which completes the proof.

Proof of Theorem 2. Condition 1 is the same as in Lemma 1, so it suffices to verify the
remaining conditions of Lemma 1. First, condition 3 ensures

lim inf
n→∞

min
i∈{1,...,n}

{h2
n(λni − 1) + 1} > 0,

so together with condition 2 we have, for some cmax ∈ (0,∞),

lim sup
n→∞

√
γ1(D2

n) = lim sup
n→∞

max
i∈{1,...,n}

∣∣∣∣ λni − 1

h2
n(λni − 1) + 1

∣∣∣∣ ≤ cmax. (6)
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Condition 2 also implies we may upon increasing cmax if needed have, for any λni and λnj,

0 < (h2
n(λni − 1) + 1)(h2

n(λnj − 1) + 1) ≤ max{1, λni}max{1, λnj} ≤ c2max.

Thus, if |λni − λnj| > ϵ,∣∣∣∣ λni − 1

h2
n(λni − 1) + 1

− λnj − 1

h2
n(λnj − 1) + 1

∣∣∣∣ = |λni − λnj|
(h2

n(λni − 1) + 1)(h2
n(λnj − 1) + 1)

>
ϵ

c2max

.
(7)

Thus, if two diagonal elements of Λn are more than ϵ apart, then the corresponding diagonal
elements of Dn are more than ϵ/c2max apart.

Applying (7) with λnj = 1 shows the number of eigenvalues of Dn in [−ϵ/(c2max), ϵ/(c
2
max)]

is at most k1
n, the number of eigenvalues of Λn in [1− ϵ, 1 + ϵ]. Consequently, together with

condition 1 we have ∑p
i=1 γi(D

2
n)∑n

i=1 γi(D
2
n)

≤ pc2max

(n− k1
n)ϵ

2/c4max

→ 0,

which verifies condition 2 of Lemma 1.
Let γ̄n = 1

n

∑n
i=1 γi(Dn) and let rn be the number of eigenvalues of Dn in [γ̄n −

ϵ/(4c2max), γ̄n + ϵ/(4c2max)]. Then

n∑
i=1

γi(D
2
n)− nγ̄2

n =
n∑

i=1

{γi(Dn)− γ̄n}2 ≥
ϵ2

16c4max

(n− rn).

We are done if lim supn→∞ rn/n < 1 since, then, condition 3 of Lemma 1 is satisfied:

lim sup
n→∞

tr(D)2

n tr(D2)
= 1− lim inf

n→∞

∑n
i=1 γi(D

2
n)− nγ̄2

n∑n
i=1 γi(D

2
n)

≤ 1− lim inf
n→∞

ϵ2n

16c6max(n− rn)
< 1.

To see rn/n is indeed bounded away from one, observe γ̄n is bounded by (6), so we may,
by the Bolzano–Weierstrass property and passing to a subsequence if necessary, assume
γ̄n converges to some γ0 ∈ R. Thus, for all large enough n, all the eigenvalues of Dn in
[γ̄n − ϵ/(4c2max), γ̄n + ϵ/(4c2max)] are also in [γ0 − ϵ/(2c2max), γ0 + ϵ/(2c2max)]. But then, by (7),
the corresponding λni are in [λ0 − ϵ, λ0 + ϵ] for some fixed λ0. For example, we can fix any i
and n such that γi(Dn) ∈ [γ0 − ϵ/(2c2max), γ0 + ϵ/(2c2max)] and let λ0 be the corresponding λni.
Thus, rn ≤ kλ0

n and the proof is completed since lim supn→∞ kλ0
n /n < 1 by condition 4.

B Different parameterizations and models

Recall h2 = σ2
g/(σ

2
g + σ2

e) and σ2 = σ2
g + σ2

e . Thus, the Jacobian of the vector [h2, σ2]T as a
function of (σ2

g , σ
2
e) is

J =

[
∂h2

∂σ2
g

∂h2

∂σ2
e

∂σ2

∂σ2
g

∂σ2

∂σ2
e

]
=

[
σ2
e

(σ2
g+σ2

e)
2 − σ2

g

(σ2
g+σ2

e)
2

1 1

]
.
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This Jacobian has full rank; its determinant 1/(σ2
g + σ2

e) is strictly positive for all possible
parameter values. Thus, the score for [σ2

d, σ
2
e ]

T is JTU , where U is the score for [h2, σ2]T, and
the corresponding Fisher information is JTIJ . Because J is invertible, the test-statistic for
[σ2

g , σ
2
e ]

T is (JTU)T(JTIJ)−1JTU = UTI−1U = TR
n .

The parameters in Crainiceanu and Ruppert (2004) are τ = σ2
g/σ

2
e and σ2

e . This gives
h2 = τ/(1 + τ) and σ2 = σ2

e(1 + τ), with the Jacobian

J̃ =

[
(1 + τ)−1 0

σ2
e 1 + τ

]
.

This Jacobian has determinant (1 + τ)−1 > 0. Thus, the test-statistic for [τ, σ2
e ]

T is the
same as that for [h2, σ2

e ]
T and that for [σ2

g , σ
2
e ]

T. These arguments show the conclusions of
Lemma 1 and Theorem 1 of the main manuscript hold in either of the three parameterizations
considered. More generally, the conclusions hold after any differentiable reparameterization
with full rank Jacobian. Moreover, because h2 is a strictly increasing function of τ , a valid
confidence interval for one gives, by a transformation of the endpoints, a valid confidence
interval for the other.

Natural extensions of the considered model would be to assume (i) Σ =
∑r

j=1 σ
2
jKj for

some known covariance matrices K1, . . . , Kr and variance components σ2
1, . . . , σ

2
r , or (ii) that

Σ = σeIn + σ2
gK(ζ) for some parameter ζ.

Under (i), suppose we want a confidence interval for h2
r = σ2

r/
∑r

j=1 σ
2
j , for example. Then

σ2 =
∑r

j=1 σ
2
j and h2

j = σ2
j/σ

2, j ∈ {1, . . . , r − 1} are effectively nuisance parameters. We
are able to deal with the former by using that the corresponding partial maximizer of the
likelihood, σ̃2, is positive with probability one, and in particular is asymptotically normal
under the null hypothesis; this follows from Lemma A. By contrast, partial maximizers
corresponding to the nuisance h2

j can be zero, and will be so with appreciable probability
if the parameters are close to zero. Thus, those partial maximizers are not asymptotically
normal under the null hypothesis, for the same reason maximum likelihood estimators of
parameters near or at the boundary are not asymptotically normal in general. Results similar
to Lemma 2 in the main manuscript would require new theory under sequences of nuisance
parameters tending to the boundary. We are aware of no suitable results in the literature,
and establishing them is a substantial undertaking and an avenue for future research.

For (ii), suppose ζ is identifiable and of fixed dimension as n grows. Let U1(h
2, σ2, ζ)

be the restricted score for h2 and I(h2, σ2, ζ) the restricted information matrix. Let
(σ̃2, ζ̃)(h2) be a partial maximizer of the restricted likelihood for a fixed h2. A result
similar to Lemma 2 of the main manuscript could be established for the test-statistic
U1(h

2, σ̃2(h), ζ̃(h2))2I11(h2, σ̃2(h), ζ̃(h2)) under additional conditions. However, the condi-
tions would have to include σ2

g ̸= 0, and hence h2 ̸= 0, since otherwise the distribution of Y
does not depend on K, making estimation of ζ impossible. Consequently, reliable inference
under (ii) is not possible in general in the boundary settings we consider. Conversely, if
the boundary problem is removed, for example by considering only sequences of parameters
tending to interior points, then results like Lemma 2 should hold for all common versions of
Wald, score, and likelihood ratio-statistics by classical arguments (Cox and Hinkley, 2000,
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Figure 1: Monte Carlo estimates of coverage probabilities for h2 with σ2
g + σ2

e = 1, β = 0,

X ∈ Rn×5 a matrix of independent standard normal entries, and Kij = 0.95|i−j|. The solid
horizontal line indicates the nominal level, 0.95. The line widths provide 95% confidence
bands for the coverage probability based on 104 trials.

Section 9.3), with some modifications to account for the fact that the parameter depends on
the sample size.

C Additional numerical results

In Fig. 1, we display simulation-based estimates of the coverage probabilities from Fig. 1
of the main manuscript, but over a smaller interval for h2. In Fig. 1, the likelihood ratio
test has coverage above the nominal level when log10(h

2) ≤ −1.24 with n = 300, but with
n = 1000, maintains the nominal coverage level at log10(h

2) = −1.48. The Wald interval’s
coverage as a function of h2 also differs from n = 300 to n = 1000.

In Fig. 2, we display a comparison of our proposed interval’s width to the with of
the interval proposed in Schweiger et al. (2016) (i.e., ALBI). Based on 1000 independent
replications under the same data generating scheme used in the main manuscript’s numerical
studies, we see that with n = 200 and h2 close to zero, the ALBI interval can be more narrow
than our interval on average. However, with n = 500 or larger, we saw that our intervals
tend to be more narrow, on average, for almost every considered combination of h2 and n.

Though not displayed here, we found the coverage probabilities of the ALBI interval to
be close to the nominal level in every considered scenario. This is expected as, like the other
simulation-based methods, ALBI simulates from the exact distribution of the test-statistic,
and hence the coverage probability should be correct up to Monte Carlo error.
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Figure 2: Violin plots of the ratio of the width of the interval proposed in Schweiger et al.
(2016) to our interval’s width with σ2

g + σ2
e = 1, β = 0, X ∈ Rn×5 a matrix of independent

standard normal entries, and Kij = 0.95|i−j|. Black dots (resp. grey diamonds) indicate the
mean (resp. median) ratio over 1000 indepedent replications.
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